The University of Michigan is live on IBM.com

By | News, Research

IBM is showcasing the current research developed with ConFlux, our ground-breaking cluster that uses IBM’s HPC and storage technology to enable scientists to draw on huge volumes of bid data and use machine learning to create reliable models for compute-intensive research.

“ With IBM hardware boosting our HPC environment, we can offer scientists the tools to conduct research that could revolutionize entire industries. ”
Todd Raeker, Research Technology Consultant for the University of Michigan.

To learn more please visit http://www-03.ibm.com/software/businesscasestudies/us/en/corp?synkey=A323848E50678F66

 

U-M joins NSF-funded SLATE project to simplify scientific collaboration on a massive scale

By | Feature, General Interest, Happenings, News, Research

From the Cosmic Frontier to CERN, New Platform Stitches Together Global Science Efforts

SLATE will enable creation of new platforms for collaborative science

Today’s most ambitious scientific quests — from the cosmic radiation measurements by the South Pole Telescope to the particle physics of CERN — are multi-institutional research collaborations requiring computing environments that connect instrumentation, data, and computational resources. Because of the scale of the data and the complexity of this science,  these resources are often distributed among university research computing centers, national high performance computing centers, or commercial cloud providers.  This can cause scientists to spend more time on the technical aspects of computation than on discoveries and knowledge creation, while computing support staff are required to invest more effort integrating domain specific software with limited applicability beyond the community served.  

With Services Layer At The Edge (SLATE), a $4 million project funded by the National Science Foundation, the University of Michigan joins a team led by the Enrico Fermi and Computation Institutes at University of Chicago to provide technology that simplifies connecting university and laboratory data center capabilities to the national cyberinfrastructure ecosystem. The University of Utah is also participating. Once installed, SLATE connects local research groups with their far-flung collaborators, allowing central research teams to automate the exchange of data, software and computing tasks among institutions without burdening local system administrators with installation and operation of highly customized scientific computing services. By stitching together these resources, SLATE will also expand the reach of domain-specific “science gateways” and multi-site research platforms.  

“Science, ultimately, is a collective endeavor. Most scientists don’t work in a vacuum, they work in collaboration with their peers at other institutions,” said Shawn McKee, a co-PI on the project and director of the Center for Network and Storage-Enabled Collaborative Computational Science at the University of Michigan. “They often need to share not only data, but systems that allow execution of workflows across multiple institutions. Today, it is a very labor-intensive, manual process to stitch together data centers into platforms that provide the research computing environment required by forefront scientific discoveries.”

SLATE works by implementing “cyberinfrastructure as code”, augmenting high bandwidth science networks with a programmable “underlayment” edge platform. This platform hosts advanced services needed for higher-level capabilities such as data and software delivery, workflow services and science gateway components.  

U-M  has numerous roles in the project including:

  • defining, procuring and configuring much of the SLATE hardware platform
  • working on the advanced networking aspects (along with Utah) which includes Software Defined Networking (SDN) and Network Function Virtualization (NFV),
  • developing the SLATE user interface and contributing to the core project design and implementation.

The project is similar to the OSiRIS project led by McKee, which also aims to remove bottlenecks to discovery posed by networking and data transfer infrastructure.

SLATE uses best-of-breed data center virtualization components, and where available, software defined networking, to enable automation of lifecycle management tasks by domain experts. As such, it simplifies the creation of scalable platforms that connect research teams, institutions and resources, accelerating science while reducing operational costs and development time. Since SLATE needs only commodity components, it can be used for distributed systems across all data center types and scales, thus enabling creation of ubiquitous, science-driven cyberinfrastructure.

slateAt UChicago, the SLATE team will partner with the Research Computing Center and Information Technology Services to help the ATLAS experiment at CERN, the South Pole Telescope and the XENON dark matter search collaborations create the advanced cyberinfrastructure necessary for rapidly sharing data, computer cycles and software between partner institutions.  The resulting systems will provide blueprints for national and international research platforms supporting a variety of science domains.  

For example, the SLATE team will work with researchers from the Computation Institute’s Knowledge Lab to develop a hybrid platform that elastically scales computational social science applications between commercial cloud and campus HPC resources. The platform will allow researchers to use their local computational resources with the analytical tools and sensitive data shared through Knowledge Lab’s Cloud Kotta infrastructure, reducing cost and preserving data security.

“SLATE is about creating a ubiquitous cyberinfrastructure substrate for hosting, orchestrating and managing the entire lifecycle of higher level services that power scientific applications that span multiple institutions,” said Rob Gardner, a Research Professor in the Enrico Fermi Institute and Senior Fellow in the Computation Institute. “It clears a pathway for rapidly delivering capabilities to an institution, maximizing the science impact of local research IT investments.”

Many universities and research laboratories use a “Science DMZ” architecture to balance security with the ability to rapidly move large amounts of data in and out of the local network. As sciences from physics to biology to astronomy become more data-heavy, the complexity and need for these subnetworks grows rapidly, placing additional strain on local IT teams.

That stress is further compounded when local scientists join multi-institutional collaborations, often requiring the installation of specialized, domain-specific services for the sharing of compute and data resources.

With SLATE, research groups will be able to fully participate in multi-institutional collaborations and contribute resources to their collective platforms with minimal hands-on effort from their local IT team. When joining a project, the researchers and admins can select a package of software from a cloud-based service — a kind of “app store” — that allows them to connect and work with the other partners.

“Software and data can then be updated automatically by experts from the platform operations and research teams, with little to no assistance required from local IT personnel,” said Joe Breen, Senior IT Architect for Advanced Networking Initiatives at the University of Utah’s Center for High Performance Computing. “While the SLATE platform is designed to work in any data center environment, it will utilize advanced network capabilities, such as software defined overlay networks, when the devices support it.”

By reducing the technical expertise and time demands for participating in multi-institution collaborations, the SLATE platform will be especially helpful to smaller universities that lack the resources and staff of larger institutions and computing centers. The SLATE functionality can also support the development of “science gateways” which make it easier for individual researchers to connect to HPC resources such as the Open Science Grid and XSEDE.

“A central goal of SLATE is to lower the threshold for campuses and researchers to create research platforms within the national cyberinfrastructure,” Gardner said.

Initial partner sites for testing the SLATE platform and developing its architecture include New Mexico State University and Clemson University, where the focus will be creating distributed  cyberinfrastructure in support of large scale bioinformatics and genomics workflows. The project will also work with the Science Gateways Community Institute, an NSF funded Scientific Software Innovation Institute, on SLATE integration to make gateways more powerful and reach more researchers and resources.

###

The Computation Institute (CI), a joint initiative of the University of Chicago and Argonne National Laboratory, is an intellectual nexus for scientists and scholars pursuing multi-disciplinary research and a resource center for developing and applying innovative computational approaches. Founded in 1999, it is home to over 100 faculty, fellows, and staff researching complex, system-level problems in such areas as biomedicine, energy and climate, astronomy and astrophysics, computational economics, social sciences and molecular engineering. CI is home to diverse projects including the Center for Robust Decision Making on Climate and Energy Policy, Knowledge Lab, The Urban Center for Computation and Data and the Center for Data Science and Public Policy.

For more information, contact Dan Meisler, Communications Manager, Advanced Research Computing at U-M: dmeisler@umich.edu, 734-764-7414

Info sessions on graduate studies in computational and data sciences — Sept. 21 and 25

By | Educational, Events, General Interest, News, Research

Learn about graduate programs that will prepare you for success in computationally intensive fields — pizza and pop provided

  • The Ph.D. in Scientific Computing is open to all Ph.D. students who will make extensive use of large-scale computation, computational methods, or algorithms for advanced computer architectures in their studies. It is a joint degree program, with students earning a Ph.D. from their current departments, “… and Scientific Computing” — for example, “Ph.D. in Aerospace Engineering and Scientific Computing.”
  • The Graduate Certificate in Computational Discovery and Engineering trains graduate students in computationally intensive research so they can excel in interdisciplinary HPC-focused research and product development environments. The certificate is open to all students currently pursuing Master’s or Ph.D. degrees at the University of Michigan.
  • The Graduate Certificate in Data Science is focused on developing core proficiencies in data analytics:
    1) Modeling — Understanding of core data science principles, assumptions and applications;
    2) Technology — Knowledge of basic protocols for data management, processing, computation, information extraction, and visualization;
    3) Practice — Hands-on experience with real data, modeling tools, and technology resources.

Times / Locations:

Siqian Shen (IOE) to receive an Early Career Award from the Department of Energy

By | News, Research

siqian-shen-featuredMICDE Associate Director Siqian Shen has been selected to receive an Early Career Award for the Department of Energy Office of Science by the DoE Office of Advanced Scientific Computing Research. The objective of her proposal titled “Extreme‐Scale Stochastic Optimization and Simulation via Learning‐Enhanced Decomposition and Parallelization” is to develop an efficient and unified framework that integrates machine learning with discrete optimization and risk‐averse modeling. The models considered represent a broad class of complex decision‐making problems, where 0‐1 or continuous decisions are made before and/or after knowing multiple and potentially correlated sources of uncertainties. This research will shed new light on the traditional decomposition algorithms for high‐performance computing.

Prof. Shen was recently promoted to Associate Professor of Industrial and Operations Engineering. To learn more about her research please visit http://micde.umich.edu/faculty-member/siqian-shen/.

The Early Career Award program from the US Department of Energy is a funding opportunity for researchers in universities and DOE national laboratories to support the development of individual research programs of outstanding scientists early in their careers. For the past 8 years this program has helped stimulate research careers in the disciplines supported by the DOE Office of Science. These include Advanced Scientific Computing Research (ASCR); Biological and Environmental Research (BER); Basic Energy Sciences (BES), Fusion Energy Sciences (FES); High Energy Physics (HEP), and Nuclear Physics (NP).

U-M, SJTU research teams share $1 million for data science projects

By | Data, General Interest, Happenings, News, Research

Five research teams from the University of Michigan and Shanghai Jiao Tong University in China are sharing $1 million to study data science and its impact on air quality, galaxy clusters, lightweight metals, financial trading and renewable energy.

Since 2009, the two universities have collaborated on a number of research projects that address challenges and opportunities in energy, biomedicine, nanotechnology and data science.

In the latest round of annual grants, the winning projects focus on data science and how it can be applied to chemistry and physics of the universe, as well as finance and economics.

For more, read the University Record article.

For descriptions of the research projects, see the MIDAS/SJTU partnership page.

MICDE Annual Symposium – Poster Competition Winners

By | Educational, Events, Research

Fifty-six posters were submitted to the 2017 MICDE symposium poster competition.

Last week’s MICDE annual symposium included a poster competition for students and postdocs. The event featured 56 posters that highlighted the interdisciplinary nature of the institute. (Some of the posters were described in a story in the Michigan Daily). All of the titles and abstracts submitted are in this spreadsheet.

Victor Wu, Ph.D. Candidate in the department of Industrial and Operations Engineering, won first place and $500 for his poster “Multicriteria Optimization for Brachytherapy Treatment Planning.” Wu and co-authors Epelman, Sir, Pasupathy, Herman and Duefel, introduced an efficient Pareto-style planning approach and intuitive graphical user interface that enables a planner or physician to directly explore dose-volume histogram metric trade-offs for brachyotherapy treatment – a common method for treating cancer patients with radiation.

Sambit Das, Ph. D. Candidate of Mechanical Engineering, earned second place and a $250 prize for his work on “Large Scale Electronic Structure Studies on the Energetics of Dislocations in Al-Mg Materials System and Its Connection to Mesoscale Models

Third place, also with a $250 prize, went to Joseph Cicchese, Ph. D. Candidate in the Department of Chemical Engineering, for his poster titled “How to optimize tuberculosis antibiotic treatments using a computational granuloma model. Cicchese and co-authors Pienaar, Kirschner and Linderman, proposed a method of combining an agent-based and multi-scale model of tuberculosis granuloma formation and treatment with surrogate-assisted optimization to identify optimal tuberculosis treatments.

 

Designing optimal shunts for newborns with heart defects using computational modeling

By | General Interest, Happenings, News, Research

shuntFor babies born with hypoplastic left heart syndrome, several open-heart surgeries are required. During Stage I, a Norwood procedure is performed to construct an appropriate circulation to both the systemic and the pulmonary arteries. The pulmonary arteries receive flow from the systemic circulation, often by using a Blalock-Taussig (BT) shunt between the innominate artery and the right pulmonary artery. This procedure causes significantly disturbed flow in the pulmonary arteries.

A group of researchers led by U-M Drs. Ronald Grifka and Alberto Figueroa used computational hemodynamic simulations to demonstrate its capacity for examining the properties of the flow through and near the BT shunt. Initially, the researchers constructed a computational model which produces blood flow and pressure measurements matching the clinical magnetic resonance imaging (MRI) and catheterization data. Achieving this required us to determine the level of BT shunt occlusion; because the occlusion is below the MRI resolution, this information is difficult to recover without the aid of computational simulations. The researchers determined that the shunt had undergone an effective diameter reduction of 22% since the time of surgery. Using the resulting geometric model, they showed that we can computationally reproduce the clinical data. The researchers then replaced the BT shunt by with a hypothetical alternative shunt design with a flare at the distal end. Investigation of the impact of the shunt design revealed that the flare can increase pulmonary pressure by as much as 7%, and flow by as much as 9% in the main pulmonary branches, which may be beneficial to the pulmonary circulation.

Read more in Frontiers in Pediatrics.

MICDE awards four Catalyst Grants

By | General Interest, News, Research

The Michigan Institute for Computational Discovery and Engineering has awarded its first round of Catalyst Grants, providing $75,000 each to four innovative projects in computational science. The proposals were judged on novelty, likelihood of success, potential for external funding, and potential to leverage ARC’s existing computing resources.

The funded projects are:

Title: From Spiking Patterns to Memory formation — Tools for Analysis and Modeling of Network-wide Cognitive Dynamics of the Brain
Researchers: Sara Aton, Department of Molecular, Cellular and Developmental Biology and Michal Zochowski, Department of Physics, Biophysics Program
Description: The aim of the research is to develop models as well as analysis tools to understand network-wide spatio-temporal patterning underlying experimentally observed neural spiking activity. The research team has developed novel tools to analyze dynamics of neuronal representations across time, before during and after learning. These tools, for the first time, compare the stability of network dynamics before and after memory encoding.

Title: Integral Equation Based Methods for Scientific Computing
Researcher: Robert Krasny, Department of Mathematics
Description: This project expands the application of numerical methods in which the differential equation is first converted into an integral equation by convolution with the Green’s function, followed by discretization and linear solution. Recent advances in numerical analysis and computing resources make this expansion possible, and the research team believes that integral equation-based numerical methods are superior to traditional methods in both serial and parallel computations. The project will attempt to apply these numerical methods to studies of viscous fluid flow, protein/solvent electrostatics, and electronic structure.

Title: Computational Energy Systems
Researchers: Pascal Van Hentenryck, Industrial and Operations Engineering (IOE); E. Byon, IOE; R. Jiang, IOE; J. Lee, IOE; and J. Mathieu, Electrical Engineering and Computer Science
Description: The research team aims to develop new algorithms for the U.S. electrical power grid that integrate renewable energy sources, electrification of transportation systems, the increasing frequency of extreme weather events, and other emerging contingencies.

Title: Black Swans, Dragon Kings, and the Science of Rare Events: Problems for the Exascale Era and Beyond
Researchers: Venkat Raman, Aerospace Engineering; Jacqueline Chen, Sandia National Laboratory; and Ramanan Sankaran, Oak Ridge National Laboratory.
Description: The purpose of the project is to develop the computational frameworks for exploring the tails of distributions, which lead to rare but consequential (and often catastrophic) outcomes. Two such rare events are “Black Swans” (occurring from pre-existing but unencountered events) and “Dragon Kings (occurring due to an external shock to the system). The methods developed are expected to have application in aerospace sciences, power generation and utilization, chemical processing, weather prediction, computational chemistry, and other fields.

Another round of Catalyst Grants will be awarded next year.

U-M, Toyota Research Institute partner in $2.4M battery project

By | General Interest, News, Research

With a $2.4 million investment from the Toyota Research Institute, University of Michigan researchers will develop computer simulation tools to predict automotive battery performance.

The project is part of a four-year, $35 million investment with research entities, universities and companies on research that uses artificial intelligence to help accelerate the design and discovery of advanced materials, TRI has announced.

Initially, the program will aim to help revolutionize materials science and identify new advanced battery materials and fuel cell catalysts that can power future zero-emissions and carbon-neutral vehicles.

“Toyota recognizes that artificial intelligence is a vital basic technology that can be leveraged across a range of industries, and we are proud to use it to expand the boundaries of materials science,” said Eric Krotkov, TRI chief science officer.

“Accelerating the pace of materials discovery will help lay the groundwork for the future of clean energy and bring us even closer to achieving Toyota’s vision of reducing global average new-vehicle CO2 emissions by 90 percent by 2050.”

The project, under the auspices of the Michigan Institute for Computational Discovery and Engineering at U-M, will combine mathematical models of the atomic nature and physics of materials with artificial intelligence.

“At the University of Michigan, we look forward to collaborating with TRI to advance computational materials science using machine learning principles,” said principal investigator Krishna Garikipati, professor of mechanical engineering and mathematics.

Also involved from U-M are Vikram Gavini, associate professor of mechanical engineering and materials science and engineering, and Karthik Duraisamy, assistant professor of aerospace engineering.

“The timing and goals of this program are well-aligned with the paradigm of data-enabled science that we have been promoting via the Michigan Institute for Computational Discovery and Engineering, and the Center for Data-Driven Computational Physics,” Duraisamy said.

The U-M project will use the ConFlux cluster, an innovative, new computing platform that enables computational simulations to interface with large datasets.

In addition to U-M, TRI’s newly funded research projects include collaborations with Stanford University, the Massachusetts Institute of Technology, University at Buffalo, University of Connecticut and the U.K.-based materials science company Ilika. TRI is also in ongoing discussions with additional research partners.

Research will merge advanced computational materials modeling, new sources of experimental data, machine learning and artificial intelligence in an effort to reduce the time scale for new materials development from a period that has historically been measured in decades.

Research programs will follow parallel paths, working to identify new materials for use in future energy systems as well as to develop tools and processes that can accelerate the design and development of new materials more broadly, according to TRI.

In support of these goals, TRI will partner on projects focused on areas including:

  • The development of new models and materials for batteries and fuel cells.
  • Broader programs to pursue novel uses of machine learning, artificial intelligence and materials informatics approaches for the design and development of new materials.
  • New automated materials discovery systems that integrate simulation, machine learning, artificial intelligence or robotics.

Accelerating materials science discovery represents one of four core focus areas for TRI, which was launched in 2015 with mandates to also enhance auto safety with automated technologies, increase access to mobility for those who otherwise cannot drive and help translate outdoor mobility technology into products for indoor mobility.

Workshop co-chaired by MIDAS co-director Prof. Hero releases proceedings on inference in big data

By | Al Hero, Educational, General Interest, Research

The National Academies Committee on Applied and Theoretical Statistics has released proceedings from its June 2016 workshop titled “Refining the Concept of Scientific Inference When Working with Big Data,” co-chaired by Alfred Hero, MIDAS co-director and the John H Holland Distinguished University Professor of Electrical Engineering and Computer Science.

The report can be downloaded from the National Academies website.

The workshop explored four key issues in scientific inference:

  • Inference about causal discoveries driven by large observational data
  • Inference about discoveries from data on large networks
  • Inference about discoveries based on integration of diverse datasets
  • Inference when regularization is used to simplify fitting of high-dimensional models.

The workshop brought together statisticians, data scientists and domain researchers from different biomedical disciplines in order to identify new methodological developments that hold significant promise, and to highlight potential research areas for the future. It was partially funded by the National Institutes of Health Big Data to Knowledge Program, and the National Science Foundation Division of Mathematical Sciences.