Angela Violi is a Professor in the Department of Mechanical Engineering, and adjunct faculty in Chemical Engineering, Biophysics, Macromolecular Science and Engineering, and Applied Physics. The research in the group of Violi is focused on the application of statistical mechanics and computational methods to chemically and physically oriented problems in nanomaterials and biology. The group investigates the formation mechanisms of nanomaterials for various applications, including energy and biomedical systems, and the dynamics of biological systems and their interactions with nanomaterials.

Don Siegel is an Associate Professor affiliated with the Mechanical Engineering Department and the Department of Material Science and Engineering. His research targets the discovery, characterization, and understanding of novel materials for energy-related applications. These efforts primarily employ atomic scale modeling to predict thermodynamic properties and kinetics. These data provide the necessary ingredients for identifying performance limiting mechanisms and for the “virtual screening” of candidate compounds having desired properties. Prof. Siegel is currently exploring several varieties of energy storage materials, lightweight structural alloys, and materials suitable for use in carbon capture applications.

Jeff Fessler is a Professor in the Department of Electrical Engineering and Computer Science – Electrical and Computer Engineering Division. His research interests include numerical optimization, inverse problems, image reconstruction, computational imaging, tomography, magnetic resonance imaging. Most of these applications involve large problem sizes and parallel computing methods (cluster, cloud, GPU, SIMD, etc.) are needed.

Thornton’s research focuses on computational and theoretical investigations of the evolution of microstructures and nanostructures during processing and operation of materials. These investigations facilitate the understanding of the underlying physics of materials and their performance, which will aid us in designing advanced materials with desirable properties and in developing manufacturing processes that would enable their fabrication. The topics include growth and coarsening of precipitates, evolution of morphologically and topologically complex systems, microstructure-based simulations of electrochemical systems such as batteries, and self-assembly of quantum dots and other nanoscale phenomena during heteroepitaxy of semiconductors. These projects involve advanced computational methods and large-scale simulations performed on high-performance computational platforms, and insights provide a means for material design and optimization.

His research interests lie in the development of numerical methods and models for massively parallel computations of fluid mechanics problems on modern computing architectures, including GPUs. He specifically focuses on high-order accurate finite difference/volume/element and spectral methods desgined for robust, accurate and efficient simulations. With his codes, he investigates the basic physics of multiphase flows, high-speed flows and shock waves, turbulence and mixing, interfacial instabilities, complex fluids and plasmas. Target applications include biomedical engineering, energy, aeronautics and naval engineering.

His group uses first-principles computational methods and high-performance computing resources to predictively model the structural, electronic, and optical properties of bulk materials and nanostructures. The goal is to understand, predict, and optimize the properties of novel electronic, optoelectronic, photovoltaic, and thermoelectric materials.

Prof. Drake has played a leading role in the development of two related fields of inquiry — High-Energy-Density Physics (HEDP) and High-Energy-Density Laboratory Astrophysics (HEDLA). This has grown from his scientific work, encompassing experiment, theory, and simulation in several topical areas. His work at Michigan, since 1996, has emphasized hydrodynamics and radiation hydrodynamics with an emphasis on connections to supernovae and other applications to astrophysics.

His research group aims to develop computational and mathematical techniques to address various aspects of materials behavior, which exhibit complexity and structure on varying length and time scales. The work draws ideas from quantum mechanics, statistical mechanics and homogenization theories to create multi-scale models from fundamental principles, which provide insight into the complex behavior of materials. Topics of research include developing multi-scale methods for density-functional theory (electronic structure) calculations at continuum scales, electronic structure studies on defects in materials, quasi-continuum method, analysis of approximation theories, numerical analysis, and quantum transport in materials.

- Vibrational end electronic relaxation
The pathways of intramolecular energy redistribution within molecules and intermolecular energy transfer between molecules, which dictate chemical reactivity, are governed by the rates of these processes. The pronounced quantum nature of these processes is attributed to the large gap between vibrational and electronic energy levels.*.* - Proton and electron transfer reactions
*.*The elementary steps of many complex chemical processes are based on such reactions. Their pronounced quantum nature is attributed to the light mass of protons and electrons, which often give rise to quantum tunneling and zero-point energy effects. - Nonadiabatic dynamics. Such dynamics underlie photochemistry and nonlinear spectroscopy is quantum in nature since it involves simultaneous motion on several potential surfaces that correspond to different electronic or vibrational states.

The challenge involved in simulating the quantum molecular dynamics of such systems has to do with the fact that the computational effort involved in solving the time-dependent Schrodinger equation is exponentially larger than that involved in Newton’s equations. As a result, a numerically exact solution of the Schrondinger equation is not feasible for a system that consists of more than a few atoms. The main research thrust of the Geva group is aimed at developing rigorous and accurate mixed quantum-classical, quasi-classical and semiclassical methods that would make it possible to simulate equilibrium and nonequilibrium quantum dynamics of systems that consist of hundreds of atoms and molecules. We put emphasis on applications to experimentally-relevant disordered complex condensed phase systems such as molecular liquids, which serve as hosts for many important chemical processes. We also specialize in modeling and analyzing different types of time resolved electronic and vibrational spectra that are used to probe molecular dynamics in those systems, often in collaboration with experimental groups.

Sharon Glotzer is a Professor of Chemical Engineering and of Material Science and Engineering. The Glotzer group uses computer simulations to discover the fundamental principles by which nanoscale systems of building blocks self-assemble into higher order, complex, and often hierarchical structures. Their goal is to learn how to manipulate matter at the molecular, nanoparticle, and colloidal scales to create “designer” structures through assembly engineering. Using molecular dynamics and Monte Carlo simulation codes developed in-house for graphics processors (GPUs) and scalable to large hybrid CPU/GPU clusters, they are the leading computational assembly group in the world, with the most powerful codes for studying assembly and packing. Among others, they are the lead developer of HOOMD-Blue, the fastest molecular dynamics code written solely for GPUs and distributed freely as open source software on codeblue.umich.edu. Based on the fundament scientific principles of assembly gleaned from their studies, they carry out high throughout simulations for materials by design, contributing to the national Materials Genome Initiative.