rood-ricky-profile-web

Richard Rood

By | | No Comments

Ricky Rood is a Professor of Climate and Space Sciences and Engineering. His current research and teaching focus is on climate change and its repercussions in society. His research history includes numerical modeling of trace constituents and atmospheric dynamics. He was director of NASA’s Center for Computational Science at Goddard Space Flight Center. He is currently consulting with NOAA on the Next Generation Global Prediction System.

Professor Rood is an active member of the climate science community, working on strategic approaches to the climate-change problem solving. He writes blogs for Wunderground.com and Climatepolicy.org and he is a main contributor of The Climate Workspace project, glisaclimate.org, a site that supports an online community of people working to address climate change questions and problems.

 

steiner-250

Allison Steiner

By | | No Comments

Allison Steiner is an Associate Professor of Climate and Space Sciences and Engineering. Her research focus is on the relationship between the atmosphere and the terrestrial biosphere to help understand the bigger question: how will the Earth respond to climate change? Her research integrates gas and particulate matter, including anthropogenic aerosols and natural aerosols such as pollen, into high-resolution models. She and her research group then compare these results with observations to develop a comprehensive understanding of regional scale climate and atmospheric chemistry.

Study of the sensitivity of two dust parametrizations of the regional climate model RegCM4 between 2007-2014 over the Sahara dn the Mediterranean. Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-434, 2016

Study of the sensitivity of two dust parametrizations of the regional climate model RegCM4 between 2007-2014 over the Sahara and the Mediterranean. Tsikerdekis et al. Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-434, 2016

Xianglei Huang

Xianglei Huang

By | | No Comments

His research makes use of rich information contained in the spectrally resolve observations (chiefly from space) to probe the climate system and gauge the performance of climate models. Topics of his ongoing projects include formulation and design of climate monitoring system based on accurate in-flight calibration system, spectrally resolved radiation budget and radiative feedbacks, detecting spectral signals of climate changes, and model evaluations using spectral data set. In the course of such studies, huge amount of data sets from observations or climate model simulations are fed into radiative transfer model to general spectral radiances at thousands of channels for each grid on the globe and for each time interval. To accurately and efficiently carry out such calculation is only possible with massive high performance computing and, as of today, such task is still computationally challenging.

Looking at our planet through thousands of IR “glasses.”

Looking at our planet through thousands of IR “glasses.”

gabortoth

Gabor Toth

By | | No Comments

Dr. Toth works on algorithm and code development for space and plasma physics simulations. He has a leading role in the development of the Space Weather Modeling Framework (SWMF) that can couple and execute about a dozen different space physics models modeling domains from the surface of the Sun to the upper atmosphere of the Earth. He is one of the main developers of the BATS-R-US code, a multi-physics and multi-application magnetohydrodynamics code using block-adaptive grids. He is collaborating with many colleagues and students using the SWMF and BATSRUS for a wide range of applications: solar corona, coronal mass ejections, magnetic storms, comets, moons (Titan, Enceladus), planetary magnetospheres (Earth, Venus, Mars, Jupiter, Saturn), interaction of moons with their plasma environment (Titan, Enceladus), interaction of comets with the solar wind, outer heliosphere interaction with the inter-stellar material, etc. The SWMF is used by the Community Coordinated Modeling Center (CCMC) at NASA Goddard for research as well as real-time forecasting of space weather. Dr. Toth was also the software architect for the Center for Radiative Shock Hydrodynamics (CRASH). This DoE funded center worked on modeling radiative shocks created by high energy lasers and the uncertainty quantification of the model results. He has designed and implemented of the Versatile Advection Code, a general purpose publicly available hydrodynamics and MHD code. VAC has been used by hundreds of researchers around the world to simulate various hydrodynamic and MHD problems.

liemohn

Michael Liemohn

By | | No Comments

His research interests focus on understanding the physical processes controlling energetic charged particle motion in planetary magnetospheres, including Earth.  He writes and uses space plasma physics numerical models, especially kinetic modeling that resolves velocity space distributions but also large-scale magnetohydrodynamic models.  Prof. Liemohn is especially interested in the nonlinear coupling within planetary magnetospheres during strong solar wind driving intervals (i.e., system-level feedback during space storms).

 

Simulation results of near-Earth space during a magnetic storm event, showing electric current traces overlaid on the plasma pressure distribution in the noon-midnight plane and radial current density on the inner boundary sphere of the simulation domain (radius of 2.5 R_E). The three colors of the current traces correspond to different current systems: symmetric ring current (pink), partial ring current (green), and tail current (blue). Magnetic field lines in the midnight plane are shown in black, revealing that these three current systems coexist on the same magnetic field line. From Liemohn et al. [GRL, 2011].

Simulation results of near-Earth space during a magnetic storm event, showing electric current traces overlaid on the plasma pressure distribution in the noon-midnight plane and radial current density on the inner boundary sphere of the simulation domain (radius of 2.5 R_E). The three colors of the current traces correspond to different current systems: symmetric ring current (pink), partial ring current (green), and tail current (blue). Magnetic field lines in the midnight plane are shown in black, revealing that these three current systems coexist on the same magnetic field line. From Liemohn et al. [GRL, 2011].

penner-joyce-profile-web

Joyce Penner

By | | No Comments

Prof. Penner’s research is adding the impacts of contrail formation within a global climate model. This involves following the physics from scales that treat aerosols (sub-micron sizes) to contrails (hundreds of meters) to climate (hundreds of kilometers). Computational aspects involve how to efficiently treat interactions across these scales.

posselt-derek-250c

Derek Posselt

By | | No Comments

Derek J. Posselt is a Deputy Principal Investigator of the NASA CYGNSS EV-2 Mission. He is an sponsored Affiliate of U-M Climate and Space Sciences and Engineering. His research seeks to quantify the multi-scale interactions that govern the feedback response of dynamically organized cloud systems to changes in the Earth’s climate. It is designed to capitalize on the convergence between modern computing resources, global observing systems, and nonlinear ensemble-based data assimilation methods. Posselt uses large-domain high-resolution numerical simulations to simultaneously resolve global and local atmospheric processes. He mines datasets collected by in-situ and remote sensing observing systems for information on the Earth’s hydrologic cycle. Posselt generates ensembles of millions of individual numerical simulations to estimate the envelope of uncertainty in projections of Earth’s future climate. Each of these efforts is not only computationally demanding, but also data-intensive, and depends critically on the availability and efficient use of large-capacity computational resources.

Climate visualization

Jablonowski

Christiane Jablonowski

By | | No Comments

Christiane Jablonowski is an Associate Professor in the Department of Climate and Space Sciences and Engineering. Her research is highly interdisciplinary and combines atmospheric science, applied mathematics, computational science and high-performance computing. Her research suggests new pathways to bridge the wide range of spatial scales between local, regional and global phenomena in climate models without the prohibitive computational costs of global high-resolution simulations. In particular, she advances variable-resolution and Adaptive Mesh Refinement (AMR) techniques for future-generation weather and climate models that are built upon a cubed-sphere computational mesh. Variable-resolution meshes enable climate modelers to focus the computational resources on features or regions of interest, and thereby allow an assessment of the many multi-scale interactions between, for example, tropical cyclones and the general circulation of the atmosphere.

Dr. Jablonowski organizes summer schools, dynamical core model intercomparison projects, teaches tutorials on parallel computing and climate modeling, develops cyber-infrastructure tools for the climate sciences, and has co-edited and co-authored a book on numerical methods for atmospheric models.

Snapshot of a 2D atmospheric model simulation showing a developing wave that is dynamically tracked by a block-structured and adaptive cubed-sphere computational mesh. Blue and red colors denote a clockwise and counterclockwise rotational motion, respectively.

Snapshot of a 2D atmospheric model simulation showing a developing wave that is dynamically tracked by a block-structured and adaptive cubed-sphere computational mesh. Blue and red colors denote a clockwise and counterclockwise rotational motion, respectively.

arbic

Brian Arbic

By | | No Comments

Brian Arbic is an Associate Professor in the Department of Earth and Environmental Sciences, with an appointment in the Department of Climate and Space Sciences Engineering and affiliations with Applied and Interdisciplinary Mathematics, Applied Physics, and the Center for the Study of Complex Systems. Arbic is a physical oceanographer primarily interested in the dynamics and energy budgets of oceanic mesoscale eddies (the oceanic equivalent of atmospheric weather systems), the large-scale oceanic general circulation, and tides. He has also studied paleotides, tsunamis, and the decadal variability of subsurface ocean temperatures and salinities. His primary tools are numerical models of the ocean. Arbic uses both realistic models, such as the HYbrid Coordinate Ocean Model (HYCOM) being used as a U.S. Navy ocean forecast model, and idealized models. He frequently compares the outputs of such models to oceanic observations, taken with a variety of instruments. Comparison of models and observations helps us to improve models and ideas about how the ocean works. His research has often been interdisciplinary, involving collaborations with scientists outside of my discipline, such as glaciologists, geodynamicists, and marine geophysicists.

The surface expression of the M_2 principal lunar semidiurnal internal tide — the tide that arises due to the stratification of the ocean. The top panel shows analysis of satellite altimetry data, while the bottom shows results from HYCOM, run by collaborators at the Naval Research Laboratory. (Shriver, et al 2012)

The surface expression of the M_2 principal lunar semidiurnal internal tide — the tide that arises due to the stratification of the ocean. The top panel shows analysis of satellite altimetry data, while the bottom shows results from HYCOM, run by collaborators at the Naval Research Laboratory. (Shriver, et al 2012)

barker

John Barker

By | | No Comments
We publish computer codes for computational chemical reaction kinetics calculations. Our long-term aim (not yet achieved!) is to develop predictive tools that are as good as experiments. Toward that end, we use statistical rate theories to predict thermal rate constants for comparison with experimental data and for making predictions. An example is Miller’s very powerful Semi-Classical Transition State Theory, which we implemented by using a variant of the Wang-Landau algorithm. We also use our codes, which are based on Gillespie’s stochastic simulation algorithm, for solving the chemical/collisional master equation for complicated unimolecular reaction systems. These calculations are used for interpreting experiments, interpolating and extrapolating sparse experimental data, and for predicting chemical product yields and rates of reactions. Our work is mostly applied to non-equilibrium atmospheric and combustion chemistry.
Chemical reaction system for nitrate radical (NO3) reacting with ethylene (C2H4). The figure shows several reaction pathways and the energies of the intermediates as the reaction progresses from the reactants (upper left) to the final products (on the right). Oxygen atoms red, nitrogen atoms are blue, carbon atoms are darker gray, and hydrogen atoms are lighter gray. [Nguyen, T. L., J. Park, K. Lee, K. Song, and J. R. Barker (2011), Mechanism and Kinetics of the Reaction NO3 + C2H4, J. Phys. Chem. A, 115, 4894–4901.]

Chemical reaction system for nitrate radical (NO3) reacting with ethylene (C2H4). The figure shows several reaction pathways and the energies of the intermediates as the reaction progresses from the reactants (upper left) to the final products (on the right). Oxygen atoms red, nitrogen atoms are blue, carbon atoms are darker gray, and hydrogen atoms are lighter gray. [Nguyen, T. L., J. Park, K. Lee, K. Song, and J. R. Barker (2011), Mechanism and Kinetics of the Reaction NO3 + C2H4, J. Phys. Chem. A, 115, 4894–4901.]