Judy Jin

By |

Judy Jin is a Professor in the Department of Industrial & Operations Engineering and the Director of the Manufacturing Engineering Program of the Integrative Systems and Design Division. Her research focuses on data fusion and system informatics for better comprehension and operation of engineering systems and decision-making for quality and reliability assurance. Her research is applied in several fields, including energy, manufacturing, medical decision making, telecommunications, transportation and unmanned ground vehicle (UGV).

Jody Jin

Brian Denton

By |

Brian Denton is a Professor in the Department of Industrial & Operations Engineering, and a member of the Institute for Healthcare Policy and Innovation. His primary research interests are in optimization under uncertainty with applications to medical decision-making. He uses stochastic programming, simulation-optimization and Markov decision processes to optimize decisions regarding detection, treatment, and prevention of chronic diseases, including cancer, diabetes and heart disease.

Pascal Van Hetenryck

By |

Pascal Van Hentenryck is the Seth Bonder Collegiate Professor of Industrial & Operations Engineering.

Prof. Van Hentenryck’s research is currently at the intersection of data science and optimization with a focus on risk and resilience, energy systems, transportation, and logistics, marketing, and social networks. Most of these applications require predictive models and optimization over complex infrastructures, natural phenomena, and human behavior.

Seth Guikema

By |

Seth Guikema is an Associate Professor of Industrial & Operations Engineering and Civil and Environmental Engineering. Prof. Guikema’s research is focused on and grounded in risk analysis, statistical learning theory, Bayesian probability, stochastic simulation, decision analysis, and agent-based modeling. The issues studied are related to climate adaptation and the sustainability of cities and infrastructure, disaster risk analysis, critical infrastructure modeling, natural hazards, and terrorism risk. Current projects include large-scale agent-based simulation models of evolution of regions in response to repeated climate-related events under different policy scenarios, data-driven evaluation of urban renewal and sustainability, and data-driven predictive modeling of the impacts of storms on power systems.

Cong Shi

By |

Cong Shi is an Assistant Professor in the Department of Industrial and Operations Engineering.

Professor Shi’s current research is focused on the design and performance analysis of efficient algorithms for stochastic optimization models, arising in the context of inventory and supply chain management, revenue management, as well as logistics. These stochastic optimization problems involve sequential decision-making under highly evolving or poorly understood environments, which are typically hard to solve to optimality. He constructs efficient heuristics that admit worst-case or average-case performance guarantees, and in doing so he develops novel analytical and computational techniques that are applicable to a broad class of models.