avioli

Angela Violi

By | | No Comments

Angela Violi is a Professor in the Department of Mechanical Engineering, and adjunct faculty in Chemical Engineering, Biophysics, Macromolecular Science and Engineering, and Applied Physics. The research in the group of Violi is focused on the application of statistical mechanics and computational methods to chemically and physically oriented problems in nanomaterials and biology. The group investigates the formation mechanisms of nanomaterials for various applications, including energy and biomedical systems, and the dynamics of biological systems and their interactions with nanomaterials.

violinanoparticlegenesis

skerlos1

Steven Skerlos

By | | No Comments

Steven Skerlos is an Arthur F. Thurnau Professor of Mechanical Engineering and a Professor of Civil and Environmental Engineering. He is the director of the U-M program in Sustainable Engineering and co-director of the Engineering Sustainable Systems Program. His research focus is on the design of technology systems to reduce environmental impact while advancing economic and societal objectives. His group works on environmental and sustainable technology systems, life cycle product design optimization and sustainable water and wastewater systems, among other topics. From designing humanitarian technologies to purifying water using anaerobic membrane reactors, Prof. Skerlos research addresses challenges in the fields of systems design, technology selection, manufacturing, and water.

Sustainable Technology Policy Maximizing the cost-effectiveness of pollution elimination eastlab.org

Sustainable Technology Policy
Maximizing the cost-effectiveness of pollution elimination (eastlab.org)

jesse_mug4

Jesse Capecelatro

By | | No Comments

Jesse Capecelatro is an Assistant Professor in the Department of Mechanical Engineering. His research is focused on developing large-scale simulation capabilities for prediction and design of the complex multi-physics and multiphase flows relevant to energy and the environment. To achieve this, his group develops robust and scalable numerical methods to leverage world-class supercomputing resources. Current research activities include adjoint-based sensitivity of turbulent combustion, modeling strongly-coupled particle-laden flows, and multiphase aeroacoustics.

Combustion in a turbulent boundary layer.

Combustion in a turbulent boundary layer.

hulbert

Gregory Hulbert

By | | No Comments

Gregory Hulbert is a Professor in the department of Mechanical Engineering. His research involves computational mechanics, structural dynamics, flexible multibody dynamics, dynamic response of composites and vehicle dynamics using finite element methods. He is also involved in the engineering education of mechanics.

grosh_sm

Karl Grosh

By | | No Comments

Professor Grosh research spans various aspects of structural acoustics, mechanics, biomechanics and linear/nonlinear vibrations. Current research involves Cochlear mechanics (experiments and modeling of the mechanics of soft tissue and tissue growth), electroacoustic transducers, and computational and analytic methods for solving interior viscous fluid-structure interaction problems.

siegel

Don Siegel

By | | No Comments

Don Siegel is an Associate Professor affiliated with the Mechanical Engineering Department and the Department of Material Science and Engineering. His research targets the discovery, characterization, and understanding of novel materials for energy-related applications. These efforts primarily employ atomic scale modeling to predict thermodynamic properties and kinetics. These data provide the necessary ingredients for identifying performance limiting mechanisms and for the “virtual screening” of candidate compounds having desired properties. Prof. Siegel is currently exploring several varieties of energy storage materials, lightweight structural alloys, and materials suitable for use in carbon capture applications.

Atomic scale model of a liquid electrolyte/solid Li2O2 interface in a Li-air battery cathode.

Atomic scale model of a liquid electrolyte/solid Li2O2 interface in a Li-air battery cathode.

remy

C. David Remy

By | | No Comments

C. David Remy is an Assistant Professor of Mechanical Engineering, and head of the Robotics and Motion Laboratory. The lab seeks to systematically exploit mechanical dynamics to make future robots faster, more efficient, and more agile.  Inspired by nature, the group designs and controls robots whose motion emerges in great part passively from the interaction of inertia, gravity, and elastic oscillations, and is merely initiated and shaped through active actuator inputs. In the long term vision, the lab’s research will allow the development of systems that reach and even exceed the agility of humans and animals. It will enable us to build autonomous robots that can run as fast as a cheetah and as enduring as a husky, while mastering the same terrain as a mountain goat. To this end, the group will develop appropriate methods for the control and design of robots. It will draw inspiration from biomechanics and biology, deepen our theoretical understanding of natural dynamics through simulation, and employ advanced numerical optimization as primary tool for systematic design and development.

remyimage

 

rudraa-150x150

Shiva Rudraraju

By | | No Comments

His research focuses on coupled multiphysics and multiscale phenomena driven by mechanics (deformation and failure) and transport. Specific topics of research include mechano-chemically driven solid-solid phase transformations, species transport and growth of biological tumors and fracture propagation in fiber reinforced composites. This work draws heavily from continuum mechanics, thermodynamics and variational methods to develop numerical formulations and computational frameworks for modeling the underlying physics. Often, this involves implementing highly parallel and scalable numerical algorithms and related code development.

Microstructure evolution in mechano-chemically driven solid-soild phase transformations.

Microstructure evolution in mechano-chemically driven solid-soild phase transformations.

waas-160x225

Anthony Waas

By | | No Comments

Anthony Waas is the Felix Pawlowski Collegiate Professor Emeritus of Aerospace Engineering and Mechanical Engineering (courtesy). The development of validated analytical and computational methods to understand how a structure (such as an air-vehicle wing, a fuselage, the load bearing structure of a land-vehicle, the wing of an insect, a wind turbine blade) made of multi-materials responds to external environments is the overarching goal of Wass’ research group. Naturally, this involves multi-physics and mechanics based models at different spatial and temporal scales. To achieve this goal, the group performs a combination of experiments, computational modeling and analysis, and theoretical developments when necessary. This work has led to novel algorithms and multi-scale methods that provide a balance between high fidelity and computational efficiency, with particular emphasis on capturing damage and failure mechanics, including interaction between these in a mesh (discretization) objective manner. Publications listed in ISI Web of Science, under the name “Waas, AM” will show the diversity of computational discovery and engineering related research that the group has done and is doing.

Crack growth prediction (code developed by Dr. Rudraa Raju)

Crack growth prediction (code developed by Dr. Rudraa Raju)

kazu-160x262

Kazuhiro Saitou

By | | No Comments

His research group investigates simulation-based and data-driven computational synthesis of for mechanical, industrial and biomedical systems. The target systems are modeled by utilizing tools and algorithms in computational mechanics, geometric reasoning, image recognition, statistical data processing, and optimized by numerical optimization algorithms. Recent application domains includes lightweight automotive structures, intelligent transportation systems, water desalination systems, energy-efficient production systems, biomedical deformable image registration, and statistical protein energy potentials.

Solar-powered desalination systems for resource-restricted environment. Numerical simulation, optimization, and data mining techniques are utilized to synthesize decision trees among feasible technology alternatives for water desalination systems in rural communities with limited infrastructure access.

Solar-powered desalination systems for resource-restricted environment. Numerical simulation, optimization, and data mining techniques are utilized to synthesize decision trees among feasible technology alternatives for water desalination systems in rural communities with limited infrastructure access.