Loading Events
  • This event has passed.

ME Faculty Candidate Seminar Series: Maziar Raissi, Brown University

December 4 @ 10:00 am - 11:00 am

2150 H.H. Dow

Bio: Maziar Raissi is an Assistant Professor of Applied Mathematics (research) in the Division of Applied Mathematics at Brown University. He received his Ph.D. in Applied Mathematics & Statistics, and Scientific Computations from University of Maryland — College Park in December 2016. Raissi’s expertise lies at the intersection of Probabilistic Machine Leaning, Deep Learning, and Data Drive Scientific Computing.

Hidden Physics Models: Machine Learning of Non-linear Partial Differential Equations

A grand challenge with great opportunities is to develop a coherent framework that enables blending conservation laws, physical principles, and/or phenomenological behaviours expressed by differential equations with the vast data sets available in many fields of engineering, science, and technology. At the intersection of probabilistic machine learning, deep learning, and scientific computations, this work is pursuing the overall vision to establish promising new directions for harnessing the long-standing developments of classical methods in applied mathematics and mathematical physics to design learning machines with the ability to operate in complex domains without requiring large quantities of data. To materialize this vision, this work is exploring two complimentary directions: (1) designing data-efficient learning machines capable of leveraging the underlying laws of physics, expressed by time dependent and non-linear differential equations, to extract patterns from high-dimensional data generated from experiments, and (2) designing novel numerical algorithms that can seamlessly blend equations and noisy multi-fidelity data, infer latent quantities of interest (e.g., the solution to a differential equation), and naturally quantify uncertainty in computations. The latter is aligned in spirit with the emerging field of probabilistic numerics.


This is a talk of potential interest to the MICDE community. The speakers in this seminar series are Faculty Candidates in the department of Mechanical Engineering for a Computational Science search that is being carried out with the active engagement of MICDE. We expect that the successful candidate will be a highly engaged affiliate of MICDE.

Details

Date:
December 4
Time:
10:00 am - 11:00 am
Event Category:

Venue

2150 H.H. Dow
2300 Hayward St
Ann Arbor, 48109 United States
+ Google Map