sharon-glotzer-small-160x225
734-615-6296
Methodologies: High Performance Computing, Materials, Open Source Code, Uncertainty Quantification

Sharon Glotzer

Professor, Chemical Engineering and Materials Science and Engineering

Affiliation(s):

Physics, Macromolecular Science and Engineering, Center for Computational Medicine and Bioinformatics, Center for the Study of Complex Systems, Michigan Energy Institute, Applied Physics

Sharon Glotzer is a Professor of Chemical Engineering and of Material Science and Engineering. The Glotzer group uses computer simulations to discover the fundamental principles by which nanoscale systems of building blocks self-assemble into higher order, complex, and often hierarchical structures. Their goal is to learn how to manipulate matter at the molecular, nanoparticle, and colloidal scales to create “designer” structures through assembly engineering. Using molecular dynamics and Monte Carlo simulation codes developed in-house for graphics processors (GPUs) and scalable to large hybrid CPU/GPU clusters, they are the leading computational assembly group in the world, with the most powerful codes for studying assembly and packing. Among others, they are the lead developer of HOOMD-Blue, the fastest molecular dynamics code written solely for GPUs and distributed freely as open source software on codeblue.umich.edu.  Based on the fundament scientific principles of assembly gleaned from their studies, they carry out high throughout simulations for materials by design, contributing to the national Materials Genome Initiative.

Shapes can arrange themselves into crystal structures through entropy alone, new computational research from the University of Michigan shows.

Shapes can arrange themselves into crystal structures through entropy alone, new computational research from the University of Michigan shows.