Wei Lu

By | | No Comments
Wei Lu is Professor in the Department of Mechanical Engineering. His research interests lie in the modeling and simulation of the evolution of nano and microstructures. His research group studies the mechanics involved in nano and micro systems, as well as the mechanical properties and performance of advanced materials. These include the joining of dissimilar materials, the fretting wear of structures, and electrochemical mechanical processes in battery systems. They use multi-scale analysis, and machine learning techniques combined with experimental methods to design and optimize new materials.

Trachette Jackson

By | | No Comments

Trachette L. Jackson is Full Professor in the Mathematics Department, who specializes in Computational Cancer Research or Mathematical Oncology.   A focus of Dr. Jackson’s research has been achieving a unified understanding of how signaling molecules, cells, and micro-environmental structures coordinate to control blood vessel generation, morphology and functionality during tumor growth.  Her work aims to biochemically and biomechanically characterize the collective motion vascular endothelial cells, one of most important cell types involved in cancer development due to their role in angiogenesis.

With an eye toward addressing critical challenges associated with targeted molecular therapeutics, for example determining which drugs are the best candidates for clinical trials, Dr. Jackson also develops multiscale mathematical models that are designed to optimize the use of targeted drug treatment strategies.  These mathematical models connect the molecular events associated with tumor growth and angiogenesis with the temporal changes in tumor cell and endothelial cell proliferation, migration and survival, and link these dynamics to tumor growth, vascular composition, and therapeutic outcome.


goldsmith-2017 - Copy

Bryan Goldsmith

By | | No Comments

Bryan Goldsmith is an Assistant Professor in the Department of Chemical Engineering. His works focus on the development of novel catalysts and materials. The world is facing a growing population, mass consumerism, and rising greenhouse gas levels, all the while people strive to increase their standard of living. Computational modeling of catalysts and materials, and making use of its synergy with experiments, facilitates the process to design new systems since it provides a valuable way to test hypotheses and understand design criteria. His research team focuses on obtaining a deep understanding of catalytic systems and advanced materials for use in sustainable chemical production, pollution abatement, and energy generation. They use first-principles modeling (e.g., density-functional theory and wave function based methods), molecular simulation, and data analytics tools (e.g., statistical learning and data mining) to extract key insights of catalysts and materials under realistic conditions, and to help create a platform for their design.

A computational prediction for a group of gold nanoclusters (global model) could miss patterns unique to nonplaner clusters (subgroup 1) or planar clusters (subgroup 2)

A computational prediction for a group of gold nanoclusters (global model) could miss patterns unique to nonplaner clusters (subgroup 1) or planar clusters (subgroup 2)


Scott Lempka

By | | No Comments

Scott Lempka is an Assistant Professor in the Department of Biomedical Engineering and director of the Neuromodulation Laboratory. The Neuromodulation Lab focuses on clinical neurostimulation (a.k.a. neuromodulation) therapies, such as spinal cord stimulation and deep brain stimulation. These therapies are used to treat a variety of neurological disorders, such as chronic pain and Parkinson’s disease. In these therapies, metal electrodes are used to apply electrical pulses that override pathological activity in the nervous system. The Neuromodulation Lab develops computer models of the electric fields generated by the stimulation and the direct neural response. These computer models are combined with clinical data, such as quantitative sensory testing and functional neuroimaging, to understand the effects of various therapies – why they work in some patients and not in others.



Matthew Kay

By | | No Comments

Matthew Kay is an Assistant Professor in the School of Information. His research focus in on human–computer interaction and information visualization. He tackles problems using a multi-faceted approach, including qualitative and quantitative analysis of behavior, building and evaluating interactive systems, and designing and testing visualization techniques.


Laura Balzano

By | | No Comments

Laura Balzano is an Assistant Professor in Electrical Engineering and Computer Science at the University of Michigan. She is an Intel Early Career Faculty Honor Fellow and received an NSF BRIGE award. She received all her degrees in Electrical Engineering: BS from Rice University, MS from the University of California in Los Angeles, and PhD from the University of Wisconsin. She received the Outstanding MS Degree of the year award from the UCLA EE Department, and the Best Dissertation award from the University of Wisconsin ECE Department. Her main research focus is on modeling with highly incomplete or corrupted data, and its applications in networks, environmental monitoring, and computer vision. Her expertise is in statistical signal processing, matrix factorization, and optimization.


Jon Zelner

By | | No Comments

Jon Zelner is an Assistant Professor in the Dept. of Epidemiology and Center for Social Epidemiology and Population Health in the UM School of Public Health. His work focuses on understanding the joint contributions of social, biological, and environmental factors to infectious disease transmission dynamics, with a particular focus on Tuberculosis (TB) transmission in high-burden contexts.

To do this, Jon uses mathematical and individual-based models to guide the design of studies and statistical tools for extracting information on infectious disease transmission from real-world spatiotemporal data. This ranges from small-scale simulation of household and community-based transmission to large-scale individual-based models of infectious disease transmission in megacities. A recurring methodological theme of this work is the challenge in navigating the tradeoff between fidelity to real-world processes and the need for parsimonious explanation of observable phenomena.

Tuberculosis hotspot in Lima, Peru

A hotspot of elevated incidence of multi-drug resistant tuberculosis (MDR-TB) in Lima, Peru is shown in red. Points indicate the location of TB cases; those marked ‘x’ are MDR-TB cases.




Yue Fan

By | | No Comments

Yue Fan is an Assistant Professor in the Department of Mechanical Engineering. The primary research interest in his group is to provide a substantive knowledge on the mechanics and micro-structural evolution in complex materials systems under extreme environments via predictive modeling. In particular, they focus on describing highly disordered systems (such as glasses, grain boundaries, etc) from the perspective of potential energy landscape (PEL), and correlating materials properties with their underlying PEL structures. The ultimate goal is to facilitate the development of new science-based high performance materials with novel functions and unprecedented strength, durability, and resistance to traditional degradation and failure.


Evgueni Filipov

By | | No Comments

Evgueni Filipov is an Assistant Professor in the Department of Civil and Environmental Engineering. His research interests lie in the field of deployable and reconfigurable structural systems. Folding and adaptable structures based on the principles of origami can have practical applications ranging in scale and discipline from biomedical robotics to deployable architecture.

His research is focused on developing computational tools that can simulate mechanical and multi-physical phenomena of deployable structures. The analytical models incorporate folding kinematics along with local and global phenomenological behaviors. Prof. Filipov uses finite element and  constitutive modeling to better understand how geometry affects elastic deformations and other physical properties of the deployable and adaptable structures. He is interested in optimization of such systems and large scale parametric studies to explore the design space and potential applications of the systems.

Elastic deformations of a deployable origami tubes (Filipov et al. PNAS 2015)

Elastic deformations of a deployable origami tubes (Filipov et al. PNAS 2015)


Richard Rood

By | | No Comments

Ricky Rood is a Professor of Climate and Space Sciences and Engineering. His current research and teaching focus is on climate change and its repercussions in society. His research history includes numerical modeling of trace constituents and atmospheric dynamics. He was director of NASA’s Center for Computational Science at Goddard Space Flight Center. He is currently consulting with NOAA on the Next Generation Global Prediction System.

Professor Rood is an active member of the climate science community, working on strategic approaches to the climate-change problem solving. He writes blogs for Wunderground.com and Climatepolicy.org and he is a main contributor of The Climate Workspace project, glisaclimate.org, a site that supports an online community of people working to address climate change questions and problems.