Filipov,Evgueni

Evgueni Filipov

By | | No Comments

Evgueni Filipov is an Assistant Professor in the Department of Civil and Environmental Engineering. His research interests lie in the field of deployable and reconfigurable structural systems. Folding and adaptable structures based on the principles of origami can have practical applications ranging in scale and discipline from biomedical robotics to deployable architecture.

His research is focused on developing computational tools that can simulate mechanical and multi-physical phenomena of deployable structures. The analytical models incorporate folding kinematics along with local and global phenomenological behaviors. Prof. Filipov uses finite element and  constitutive modeling to better understand how geometry affects elastic deformations and other physical properties of the deployable and adaptable structures. He is interested in optimization of such systems and large scale parametric studies to explore the design space and potential applications of the systems.

Elastic deformations of a deployable origami tubes (Filipov et al. PNAS 2015)

Elastic deformations of a deployable origami tubes (Filipov et al. PNAS 2015)

rood-ricky-profile-web

Richard Rood

By | | No Comments

Ricky Rood is a Professor of Climate and Space Sciences and Engineering. His current research and teaching focus is on climate change and its repercussions in society. His research history includes numerical modeling of trace constituents and atmospheric dynamics. He was director of NASA’s Center for Computational Science at Goddard Space Flight Center. He is currently consulting with NOAA on the Next Generation Global Prediction System.

Professor Rood is an active member of the climate science community, working on strategic approaches to the climate-change problem solving. He writes blogs for Wunderground.com and Climatepolicy.org and he is a main contributor of The Climate Workspace project, glisaclimate.org, a site that supports an online community of people working to address climate change questions and problems.

 

MingXu

Ming Xu

By | | No Comments

Ming Xu is an Associate Professor in the School of Natural Resources and Environment, and in the Department of Civil and Environmental Engineering. The focus of his research is to understand the interaction between industrial systems and the biophysical environment. His goal is to provide an understanding of driving forces of environmental pressures and to help find an alternative pathway to reduce these pressures. Prof. Xu inherently interdisciplinary research combines data science, complex systems modeling and industrial ecology.

 

dan-brown

Daniel Brown

By | | No Comments

Daniel Brown is a Professor in the School of Natural Resources and Environment. He is the Director of the Environmental Spatial Analysis Laboratory, and a Research Professor in the Survey Research Center, Institute for Social Research. His research focuses on linking landscape patterns with ecological and social processes. Professor Brown has studied vegetation types and patterns, land use and changes, climate changes and effect for over 25 years. His recent research focuses on the social and ecological aspects of land use in China, Mongolia and Africa, as well as land-use in South East Michigan and in the US Great Plains. His research requires the use of multiple methods, including Geographic information systems (GIS), computer modeling, remote sensing, social surveys and statistics.

Measures of land use pattern and difference in model and historical record [Regional Environmental Change, 15(2): 301-315 (2015)]

Measures of land use pattern and difference between an agent-based model and historical record [Regional Environmental Change, 15(2): 301-315 (2015)]

hbmayes

Heather Mayes

By | | No Comments

Heather Mayes is an Assistant Professor in the Department of Chemical Engineering. Her research group uses multi-scale modeling to discover protein-sugar interactions and to harness them for renewable energy and improved health. The study of carbohydrate-protein interactions is an important step to create renewable fuels and chemicals from non-food biomass, and the results can be applied to several human diseases, including cancer and autoimmune disorders. Prof. Mayes uses computational tools in her research, including quantum mechanics, molecular dynamics, and rare-event sampling methods. She collaborates with experimental groups to understand past and guide future wet-lab studies to advance renewable chemicals and fuels, as well as disease understanding.

mayes-small

Multiscale simulation to uncover mechanisms behind protein-sugar interactions, such as how the T. reesi Cel6A enzyme coordinates making and breaking four bonds for cellulose hydrolysis.

 

 

PhaniMotamarri

Phani Motamarri

By | | No Comments

Phani Motamarri is an Assistant Research Scientist in the department of Mechanical Engineering. His research interests lie in the broad scope of computational materials science with emphasis on computational nano-science leading to applications in the areas of mechanics of materials and energy. His research is strongly multidisciplinary, drawing ideas from applied mathematics, data science, quantum-mechanics, solid-mechanics, materials science and scientific computing.

The current research focus lies in developing systematically improvable real-space computational methodologies and associated mathematical techniques for conducting large-scale electronic-structure (ab-initio) calculations -via- density functional theory (DFT). Massively parallel and scalable numerical algorithms using finite-elements (DFT-FE) are developed as a part of this research effort, which enabled large-scale DFT calculations on tens of thousands of atoms for the first time using finite-element basis. These computational methods will aid fundamental studies on defects in materials, molecular and nanoscale systems which otherwise would have been difficult to study with the existing state of the art computational methods. Current areas of application include — (a) first-principles modelling of energetics of point defects and dislocations in Al, Mg and its alloys which are popular in light-weighting applications to provide useful inputs to meso-scale and continuum models, (b) providing all-electron DFT input to advanced electronic structure approaches like the GW method for accurate prediction of electronic properties in semiconductor-materials.

Electron-density contours of 3430 atom aluminum nanocluster using pseudopotential DFT-FE

Electron-density contours of 3430 atom aluminum nanocluster using pseudopotential DFT-FE

Electron density contours of 3920 electron silicon nanocluster using all-electron DFT-FE

Electron density contours of 3920 electron silicon nanocluster using all-electron DFT-FE

Computational time (CPU-Hrs) per SCF iteration for the reduced-scaling subspace projection method and conventional diagonalization approach(ChFSI-FE). Case study: Alkane chains upto 7000 atoms.

Computational time (CPU-Hrs) per SCF iteration for the reduced-scaling subspace projection method and conventional diagonalization approach(ChFSI-FE). Case study: Alkane chains upto 7000 atoms.

avioli

Angela Violi

By | | No Comments

Angela Violi is a Professor in the Department of Mechanical Engineering, and adjunct faculty in Chemical Engineering, Biophysics, Macromolecular Science and Engineering, and Applied Physics. The research in the group of Violi is focused on the application of statistical mechanics and computational methods to chemically and physically oriented problems in nanomaterials and biology. The group investigates the formation mechanisms of nanomaterials for various applications, including energy and biomedical systems, and the dynamics of biological systems and their interactions with nanomaterials.

violinanoparticlegenesis

skerlos1

Steven Skerlos

By | | No Comments

Steven Skerlos is an Arthur F. Thurnau Professor of Mechanical Engineering and a Professor of Civil and Environmental Engineering. He is the director of the U-M program in Sustainable Engineering and co-director of the Engineering Sustainable Systems Program. His research focus is on the design of technology systems to reduce environmental impact while advancing economic and societal objectives. His group works on environmental and sustainable technology systems, life cycle product design optimization and sustainable water and wastewater systems, among other topics. From designing humanitarian technologies to purifying water using anaerobic membrane reactors, Prof. Skerlos research addresses challenges in the fields of systems design, technology selection, manufacturing, and water.

Sustainable Technology Policy Maximizing the cost-effectiveness of pollution elimination eastlab.org

Sustainable Technology Policy
Maximizing the cost-effectiveness of pollution elimination (eastlab.org)

kochunas_photo

Brendan Kochunas

By | | No Comments

Brendan Kochunas is an Assistant Research Scientist in the Department of Nuclear Engineering and Radiological Science. Dr. Kochunas work focus on high performance computing methods, especially parallel algorithms for the 3D Boltmann Transport Equation. He is the lead developer and primary author of the MPACT (Michigan Parallel Characterstics based Transport) code. Currently, leading the development of MPACT and its application within CASL (www.casl.gov) constitutes his research activities.

Dr. Kochunas is the lead instructor of MICDE course Methods and Practice of Scientific Computing. He has created a novel and integrated class curriculum that immerse U-M students in many HPC tools and resources, and teaches them to effectively use these in scientific computing research.

steiner-250

Allison Steiner

By | | No Comments

Allison Steiner is an Associate Professor of Climate and Space Sciences and Engineering. Her research focus is on the relationship between the atmosphere and the terrestrial biosphere to help understand the bigger question: how will the Earth respond to climate change? Her research integrates gas and particulate matter, including anthropogenic aerosols and natural aerosols such as pollen, into high-resolution models. She and her research group then compare these results with observations to develop a comprehensive understanding of regional scale climate and atmospheric chemistry.

Study of the sensitivity of two dust parametrizations of the regional climate model RegCM4 between 2007-2014 over the Sahara dn the Mediterranean. Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-434, 2016

Study of the sensitivity of two dust parametrizations of the regional climate model RegCM4 between 2007-2014 over the Sahara and the Mediterranean. Tsikerdekis et al. Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-434, 2016