Wei Lu

By | | No Comments
Wei Lu is Professor in the Department of Mechanical Engineering. His research interests lie in the modeling and simulation of the evolution of nano and microstructures. His research group studies the mechanics involved in nano and micro systems, as well as the mechanical properties and performance of advanced materials. These include the joining of dissimilar materials, the fretting wear of structures, and electrochemical mechanical processes in battery systems. They use multi-scale analysis, and machine learning techniques combined with experimental methods to design and optimize new materials.
WeiLu

Bryan Goldsmith

By | | No Comments

Bryan Goldsmith is an Assistant Professor in the Department of Chemical Engineering. His works focus on the development of novel catalysts and materials. The world is facing a growing population, mass consumerism, and rising greenhouse gas levels, all the while people strive to increase their standard of living. Computational modeling of catalysts and materials, and making use of its synergy with experiments, facilitates the process to design new systems since it provides a valuable way to test hypotheses and understand design criteria. His research team focuses on obtaining a deep understanding of catalytic systems and advanced materials for use in sustainable chemical production, pollution abatement, and energy generation. They use first-principles modeling (e.g., density-functional theory and wave function based methods), molecular simulation, and data analytics tools (e.g., statistical learning and data mining) to extract key insights of catalysts and materials under realistic conditions, and to help create a platform for their design.

A computational prediction for a group of gold nanoclusters (global model) could miss patterns unique to nonplaner clusters (subgroup 1) or planar clusters (subgroup 2)

A computational prediction for a group of gold nanoclusters (global model) could miss patterns unique to nonplaner clusters (subgroup 1) or planar clusters (subgroup 2)

Laura Balzano

By | | No Comments

Laura Balzano is an Assistant Professor in Electrical Engineering and Computer Science at the University of Michigan. She is an Intel Early Career Faculty Honor Fellow and received an NSF BRIGE award. She received all her degrees in Electrical Engineering: BS from Rice University, MS from the University of California in Los Angeles, and PhD from the University of Wisconsin. She received the Outstanding MS Degree of the year award from the UCLA EE Department, and the Best Dissertation award from the University of Wisconsin ECE Department. Her main research focus is on modeling with highly incomplete or corrupted data, and its applications in networks, environmental monitoring, and computer vision. Her expertise is in statistical signal processing, matrix factorization, and optimization.

Ming Lin

By | | No Comments

Ming Lin’s research focuses on  high dimensional high order statistics and the related applications in real world machine learning problems. His recent research topics includes symmetric matrix sensing, Positive Unlabeled learning, One-bit Active learning and nonconvex tensor machine.

Michael Wellman

By | | No Comments

In a strategic environment, agents face decisions where the outcomes depend on the behavior of other autonomous agents. The strategic reasoning group develops techniques for understanding and engineering complex multiagent environments, using concepts and methods from economics as well as computer science. Specifically, we apply game-theoretic principles to data from large-scale agent-based simulation, in an approach called empirical game-theoretic analysis (EGTA). EGTA combines simulation, machine learning, and other empirical methods to reason about the strategic issues in complex multiagent settings. We are particularly interested in domains characterized by dynamism, networks, and uncertainty, including applications in financial markets, information security, and sustainable transportation.

The iterative empirical game-theoretic analysis process.

The iterative empirical game-theoretic analysis process.

C. Alberto Figueroa

By | | No Comments

Alberto Figueroa is an Associate Professor with a joint appointment in Biomedical Engineering and Surgery. He works on computational methods for patient-specific cardiovascular simulation.figueroa_image-264x300

Modeling the function of the cardiovascular system in health and disease represents a fascinating scientific challenge. This challenge can only be addressed by combining a deep understanding of the physiologic, biologic, engineering and mathematical principles involved.Our lab uses medical image processing, high performance computational fluid dynamics simulation, and multi-scale modeling to simulate blood flow in the human body. Our specific areas of interest are surgical planning, disease research, arterial growth and remodeling, and medical device design and performance evaluation.

Cynthia Chestek

By | | No Comments

Cynthia Chestek is an Assistant Professor of Biomedical Engineering, Electrical Engineering – Electrical and Computer Engineering Division, and the Neurosciences Graduate Program.

The Chestek lab focuses on brain machine interface (BMI) systems using 100 channel arrays implanted in motor and pre-motor cortex. The goal of this research is to eventually develop clinically viable systems to enable paralyzed individuals to control prosthetic limbs, as well as their own limbs using functional electrical stimulation and assistive exoskeletons. The lab apply a variety of machine learning algorithms to large-scale neural datasets obtained from spiking activity or field potentials in order to decode the motor commands. This is done both offline, and in real-time during experiments. Other computational challenges include mitigating non-stationarities in neural recordings over time. Over the next few decades, the size of these datasets is most likely to increase with the development of larger electrode arrays, and novel surgical techniques for implanting them.
Chestekimage

Aaron Frank

By | | No Comments

In order to understand the relationship between molecular structure and dynamics and biological function, the Frank research group seeks to develop and deploy integrative modeling tools to elucidate the structure and dynamics of biologically relevant molecules. Our methods will utilize readily accessible experimental observables from a variety of sources to first guide structure prediction efforts and then guide atomistic simulations to map the entire conformational landscape of these molecules. We are primarily interested in using our methods to understand how functional ribonucleic acids, either by themselves or in concert with other molecules, achieve specific cellular functions. Our research makes heavy use of advanced machine learning  and  optimization techniques.

Integrative modeling and simulations of biomolecules

Integrative modeling and simulations of biomolecules