MugShotMariana-small

Mariana Carrasco-Teja

By | | No Comments

Dr. Mariana Carrasco-Teja received her PhD from the Mathematics Department at the University of British Columbia (UBC) (Vancouver, BC). She was part of the Institute of Applied Mathematics (UBC), an institute established to enhance interdisciplinary teaching and research using applied mathematics as a common language between engineers and scientists.  Her dissertation involved modeling and simulating the primary cementing of oil and gas wells, a crucial step to ensure a safe and efficient extraction of oil and gas.  After receiving her PhD, she continued her work as a postdoctoral fellow at the Complex Fluids Laboratory in UBC until she moved to Ann Arbor to join the Department of Chemical Engineering at the University of Michigan. Since becoming a member of the Cell Adhesion and Drug Delivery Laboratory, she’s had a chance to work closely with bioengineers while applying her modeling skills into optimizing vascular-targeted drug micro- and nano-carriers.

She was named MICDE Assistant Director in July 2015.

FIGUEROA_Alberto4x5-240x300

C. Alberto Figueroa

By | | No Comments

Alberto Figueroa is an Associate Professor with a joint appointment in Biomedical Engineering and Surgery. He works on computational methods for patient-specific cardiovascular simulation.figueroa_image-264x300

Modeling the function of the cardiovascular system in health and disease represents a fascinating scientific challenge. This challenge can only be addressed by combining a deep understanding of the physiologic, biologic, engineering and mathematical principles involved.Our lab uses medical image processing, high performance computational fluid dynamics simulation, and multi-scale modeling to simulate blood flow in the human body. Our specific areas of interest are surgical planning, disease research, arterial growth and remodeling, and medical device design and performance evaluation.

barzan

Barzan Mozafari

By | | No Comments

Barzan Mozafari is an Assistant Professor of Electrical Engineering and Computer Science at the University of Michigan (Ann Arbor), where he is a member of the Michigan Database Group and the Software Systems Lab. Prior to that, he was a postdoctoral associate at Massachusetts Institute of Technology. He earned his Ph.D. in Computer Science from the University of California at Los Angeles. He is passionate about building large-scale data-intensive systems, with a particular interest in database-as-a-service clouds, distributed systems, and crowdsourcing. In his research, he draws on advanced mathematical models to deliver practical database solutions. He has won several awards and fellowships, including SIGMOD 2012 and EuroSys 2013’s best paper awards.

gusMar09-297x300

August (Gus) Evrard

By | | No Comments

August (Gus) Evrard is Arthur F. Thurnau Professor in the departments of Physics and Astronomy, and the Michigan Center for Theoretical Physics. He serves as Associate Director for Community Engagement with ARC. Professor Evrard is a computational cosmologist who models the formation and evolution of large-scale cosmic structure. He currently co-leads the Simulation Working Group for the US-led Dark Energy Survey and is a member of the XMM-XXL project and Virgo Consortium based in Europe. His research uses N-body and hydrodynamic methods to study the formation of galaxies and clusters of galaxies. The simulations also produce synthetic expectations for astronomical sky surveys, providing truth tables that are essential for verifying data handling and statistical processing methods applied to survey data to study the nature of dark matter and dark energy. Professor Evrard was named a Fellow of the American Physical Society in 2011 and an ORCID Ambassador in 2013. He is active in instructional technology at Michigan, founding the Academic Reporting Tool service in use since 2006 and Problem Roulette, a cloud-based study service that offers random, topical access to old exam questions for students in introductory physics classes.

Synthetic sky image derived from N-body simulations of a universe dominated by vacuum energy.

Synthetic sky image derived from N-body simulations of a universe dominated by vacuum energy.

krishnaGarikipati

Krishna Garikipati

By | | No Comments

His research is in computational physics, specifically biophysics (tumor growth and cell mechanics) and materials physics (battery materials, structural alloys and semiconductor materials). In these areas Garikipati’s group focuses on developing mathematical and numerical models of phenomena that can be described by continuum analyses that translate to PDEs. Usually, these are nonlinear, and feature coupled physics, for example chemo-thermo-mechanics. Our numerical techniques are mesh-based variational methods such as the finite element method and its many variants. In some problems we make connections with fine-grained models, in which case we work with kinetic Monte Carlo, molecular dynamics or electronic structure calculations in some form. In the realm of analysis, we often examine the asymptotic limits of our mathematical models, and the consistency, stability and convergence of our numerical methods.

Isogeometric analysis (weak form based-solution of PDEs with spline basis functions) of phase transformations in a battery material.

Isogeometric analysis (weak form based-solution of PDEs with spline basis functions) of phase transformations in a battery material.

vikramcrop-160x203

Vikram Gavini

By | | No Comments

His research group aims to develop computational and mathematical techniques to address various aspects of materials behavior, which exhibit complexity and structure on varying length and time scales. The work draws ideas from quantum mechanics, statistical mechanics and homogenization theories to create multi-scale models from fundamental principles, which provide insight into the complex behavior of materials. Topics of research include developing multi-scale methods for density-functional theory (electronic structure) calculations at continuum scales, electronic structure studies on defects in materials, quasi-continuum method, analysis of approximation theories, numerical analysis, and quantum transport in materials.

Hierarchy of triangulations that form the basis of a coarse-graining methods (quasi-continuum reduction) for conducting electronic structure calculations at macroscopic scales.

Hierarchy of triangulations that form the basis of a coarse-graining methods (quasi-continuum reduction) for conducting electronic structure calculations at macroscopic scales.