Predictive Modeling on the Mechanical Performance of Structural Materials at Complex Environments

——— a tale of two solids by energy landscape-based atomistic modeling

YUE FAN

Assistant Professor
Department of Mechanical Engineering
University of Michigan, Ann Arbor
Compelling Need in Materials Performance Under Complex Environments far-from-Equilibrium

- high strain rates
- non-uniform thermo-mechanical environments
- extreme T, irradiation, chemistry
- non-equilibrium solidifications, large residue stresses and distortions
Compelling Need in Materials Performance Under Complex Environments far-from-Equilibrium

- high strain rates
- non-uniform thermo-mechanical environments
- extreme T, irradiation, chemistry

Diagram:

- External stimuli
- Topological Defects
- Distribution:
 - Perfect lattice
 - Defect states

- Wide spectrum of defects identification?
Compelling Need in Materials Performance Under Complex Environments far-from-Equilibrium

Predictive Design of Structural Materials with Desired Properties

Integrated Methodology based on Potential Energy Landscape (PEL)

Identify and Optimize pathways in PEL and processing space
Multi-scale modeling scheme: current methods & challenges

Dislocation-mediated microstructural evolution is an immensely complicated phenomenon involving multiple scales over many orders of magnitude.

Traditional MD simulations cannot be validated by in situ TEM experiments.

Time Scale

- **10^{-12} s**
- **10^{-6} s**
- **10^{0} s**
- **10^{6} s**

Length Scale

- **nm**
- **µm**
- **mm**

Atomic-scale

- e.g. first principle models, molecular dynamics (MD)

Meso-scale

- e.g. dislocation dynamics (DD), visco-plastic self-consistent (VPSC)

Macro-scale

- e.g. finite element method (FEM)

Traditional MD simulations

- Condition: 2x10^7 s^{-1}, 100 K
- Outcome: obstacle remains intact

in situ TEM

- Condition: 10^{-2} s^{-1}, 300 K
- Outcome: obstacle is removed by dislocation
Multi-scale modeling scheme: current methods & challenges

Dislocation-mediated microstructural evolution is an immensely complicated phenomenon involving multiple scales over many orders of magnitude.

- **Atomic-scale**: e.g. first principle models, molecular dynamics (MD)
- **Meso-scale**: e.g. dislocation dynamics (DD), visco-plastic self-consistent (VPSC)
- **Macro-scale**: e.g. finite element method (FEM)

Traditional MD simulations cannot be validated by *in situ* TEM experiments

MD simulations
- Condition: \(2 \times 10^7 \text{s}^{-1}, 100 \text{ K}\)
- Outcome: obstacle remains intact

in situ TEM
- Condition: \(10^{-2} \text{s}^{-1}, 300 \text{ K}\)
- Outcome: obstacle is removed by dislocation

Time Scale

- \(10^{-12} \text{s}\)
- \(10^{6} \text{s}\)
- \(10^{0} \text{s}\)

Length Scale

- \(\text{nm}\)
- \(\mu\text{m}\)
- \(\text{mm}\)

S1: Dislocation-Mediated Mechanics in Crystalline Materials
S1: Dislocation-Mediated Mechanics in Crystalline Materials

- Employ PEL-based techniques to provide reliable mechanisms and parameters to higher-level models such as DD, VPSC, and FEM, to enhance the capability of predictive design.

Time Scale

- **10^{-12} s**
- **10^{-6} s**
- **10^0 s**
- **10^6 s**

Length Scale

- **nm**
- **µm**
- **mm**

Proposed new modeling roadmap to capture the fundamental processes at realistic timescale

- **MD simulations**
 - Condition: 2x10^7 s^{-1}, 100 K
 - Outcome: obstacle remains intact

- **in situ TEM**
 - Condition: 10^{-2} s^{-1}, 300 K
 - Outcome: obstacle is removed by dislocation

Traditional MD simulations cannot be validated by in situ TEM experiments

- **Meso-scale**
 - e.g. dislocation dynamics (DD), visco-plastic self-consistent (VPSC)

- **Macro-scale**
 - e.g. finite element method (FEM)

Challenges in traditional scheme

- **Atomic-scale**
 - e.g. first principle models, molecular dynamics (MD)

- **PEL-based atomistic modeling at long timescale**

Employ PEL-based techniques to provide reliable mechanisms and parameters to higher-level models such as DD, VPSC, and FEM, to enhance the capability of predictive design.
S2: Mechanics of Disordered Alloys (e.g. Metallic Glasses)

• Processing history dependence

• Testing condition dependence

Effective PEL-Property Relationship

\[
\frac{dE_{IS}}{dt} = \nu \cdot \exp\left(-\frac{E_A}{k_B T}\right) \cdot [E_A - E_R] + \mathcal{R}_{ext}(\mathcal{R}, \phi)
\]

coupling with external stimuli
Compelling Need in Materials Performance Under Complex Environments far-from-Equilibrium

What's Next?