Charles Brooks

By |

Charles L. Brooks III is the Warner-Lambert/Parke-Davis Professor of Chemistry and a Professor of Biophysics. He is affiliated with the department of Chemistry, Biophysics Program, program in Applied Physics, Molecular Biophysics Training Program (Director), program in Chemical Biology, Bioinformatics Graduate Program, Center for Computational Medicine and Bioinformatics and the Medicinal Chemistry Interdepartmental Graduate Program. The research in the group of Charles L. Brooks III is focused on the application of statistical mechanics, quantum chemistry and computational methods to chemically and physically oriented problems in biology. The group develops and applies computational models to studies of the dynamics of proteins, nucleic acids and their complexes, including virus structure and assembly. They specifically develop novel computational methods for the inclusion of pH effects in modeling biological systems. Significant focus is in the development of a large, world-wide distributed software package for molecular simulations, CHARMM. Efforts are ongoing to explore new means of parallel and accelerated computation utilizing scalable parallel algorithms for molecular dynamics and integrated CPU/GPU computational models.

R. Paul Drake

By |

Prof. Drake has played a leading role in the development of two related fields of inquiry — High-Energy-Density Physics (HEDP) and High-Energy-Density Laboratory Astrophysics (HEDLA). This has grown from his scientific work, encompassing experiment, theory, and simulation in several topical areas. His work at Michigan, since 1996, has emphasized hydrodynamics and radiation hydrodynamics with an emphasis on connections to supernovae and other applications to astrophysics.

Vikram Gavini

By |

His research group aims to develop computational and mathematical techniques to address various aspects of materials behavior, which exhibit complexity and structure on varying length and time scales. The work draws ideas from quantum mechanics, statistical mechanics and homogenization theories to create multi-scale models from fundamental principles, which provide insight into the complex behavior of materials. Topics of research include developing multi-scale methods for density-functional theory (electronic structure) calculations at continuum scales, electronic structure studies on defects in materials, quasi-continuum method, analysis of approximation theories, numerical analysis, and quantum transport in materials.

Hierarchy of triangulations that form the basis of a coarse-graining methods (quasi-continuum reduction) for conducting electronic structure calculations at macroscopic scales.

Hierarchy of triangulations that form the basis of a coarse-graining methods (quasi-continuum reduction) for conducting electronic structure calculations at macroscopic scales.

Eitan Geva

By |
Eitan Geva is a Professor of Chemistry. Modern computational chemistry strives to provide an atomistically detailed dynamical description of fundamental chemical processes. The strategy for reaching this goal generally follows a two-step program. In the first step, electronic structure calculations are used to obtain the force fields that the nuclei are subject to. In the second step, molecular dynamics simulations are used to describe the motion of the nuclei. The first step is always based on quantum mechanics, in the light of the pronounced quantum nature of the electrons. However, the second step is most often based on classical mechanics. Indeed, classical molecular dynamics simulations are rroutinely used nowadays for describing the dynamics of complex chemical systems that involve tens of thousands of atoms. However, there are many important situations where classical mechanics cannot be used for describing the dynamics. Our research targets the most chemically relevant examples of such processes.
  1. Vibrational end electronic relaxation. The pathways of intramolecular energy redistribution within molecules and intermolecular energy transfer between molecules, which dictate chemical reactivity, are governed by the rates of these processes. The pronounced quantum nature of these processes is attributed to the large gap between vibrational and electronic energy levels.
  2. Proton and electron transfer reactions. The elementary steps of many complex chemical processes are based on such reactions. Their pronounced quantum nature is attributed to the light mass of protons and electrons, which often give rise to quantum tunneling and zero-point energy effects.
  3. Nonadiabatic dynamics. Such dynamics underlie photochemistry and nonlinear spectroscopy is quantum in nature since it involves simultaneous motion on several potential surfaces that correspond to different electronic or vibrational states.

The challenge involved in simulating the quantum molecular dynamics of such systems has to do with the fact that the computational effort involved in solving the time-dependent Schrodinger equation is exponentially larger than that involved in Newton’s equations. As a result, a numerically exact solution of the Schrondinger equation is not feasible for a system that consists of more than a few atoms. The main research thrust of the Geva group is aimed at developing rigorous and accurate mixed quantum-classical, quasi-classical and semiclassical methods that would make it possible to simulate equilibrium and nonequilibrium quantum dynamics of systems that consist of hundreds of atoms and molecules. We put emphasis on applications to experimentally-relevant disordered complex condensed phase systems such as molecular liquids, which serve as hosts for many important chemical processes. We also specialize in modeling and analyzing different types of time resolved electronic and vibrational spectra that are used to probe molecular dynamics in those systems, often in collaboration with experimental groups.

gevaimage

Sharon Glotzer

By |

Sharon Glotzer is a Professor of Chemical Engineering and of Material Science and Engineering. The Glotzer group uses computer simulations to discover the fundamental principles by which nanoscale systems of building blocks self-assemble into higher order, complex, and often hierarchical structures. Their goal is to learn how to manipulate matter at the molecular, nanoparticle, and colloidal scales to create “designer” structures through assembly engineering. Using molecular dynamics and Monte Carlo simulation codes developed in-house for graphics processors (GPUs) and scalable to large hybrid CPU/GPU clusters, they are the leading computational assembly group in the world, with the most powerful codes for studying assembly and packing. Among others, they are the lead developer of HOOMD-Blue, the fastest molecular dynamics code written solely for GPUs and distributed freely as open source software on codeblue.umich.edu.  Based on the fundament scientific principles of assembly gleaned from their studies, they carry out high throughout simulations for materials by design, contributing to the national Materials Genome Initiative.

Shapes can arrange themselves into crystal structures through entropy alone, new computational research from the University of Michigan shows.

Shapes can arrange themselves into crystal structures through entropy alone, new computational research from the University of Michigan shows.