Explore ARCExplore ARC

Yuanfang Guan

By |

Yuanfang Guan is an associate professor of Computational Medicine and Bioinformatics. She got her B.S. from the University of Hong Kong, and her Ph.D. in Molecular Biology from Princeton University.

Prof. Guan is interested in machine learning in biology and medicine. Her team has written the majority of the best-performing algorithms in DREAM challenges, the largest systems biology benchmark study. Prof. Guan was awarded the ‘Consistent Best Technical Performer’ for her groups achievements in the DREAM challenges and in recognition of the open source software that they have contributed to the bioinformatics field. She is one of the very few people globally who own multiple gold medals in the annual Data Science Bowl by Kaggle.

Her team has written many award-winning deep learning methods. In traditional machine learning, she is the inventor of GuanRank, adaptive GPR and several other algorithms that are often used as the reference algorithms in benchmark studies/challenges.

Ming Lin

By |

Ming Lin’s research focuses on  high dimensional high order statistics and the related applications in real world machine learning problems. His recent research topics includes symmetric matrix sensing, Positive Unlabeled learning, One-bit Active learning and nonconvex tensor machine.

Ivo Dinov

By |

Dr. Ivo Dinov directs the Statistics Online Computational Resource (SOCR), co-directs the multi-institutional Probability Distributome Project, and is an associate director for education of the Michigan Institute for Data Science (MIDAS).

Dr. Dinov is an expert in mathematical modeling, statistical analysis, computational processing and visualization of Big Data. He is involved in longitudinal morphometric studies of human development (e.g., Autism, Schizophrenia), maturation (e.g., depression, pain) and aging (e.g., Alzheimer’s and Parkinson’s diseases). Dr. Dinov is developing, validating and disseminating novel technology-enhanced pedagogical approaches for scientific education and active learning.

 

dinov_pd_05-1024x274

Analyzing Big observational data including thousands of Parkinson’s disease patients based on tens-of-thousands signature biomarkers derived from multi-source imaging, genetics, clinical, physiologic, phenomics and demographic data elements is challenging. We are developing Big Data representation strategies, implementing efficient algorithms and introducing software tools for managing, analyzing, modeling and visualizing large, complex, incongruent and heterogeneous data. Such service-oriented platforms and methodological advances enable Big Data Discovery Science and present existing opportunities for learners, educators, researchers, practitioners and policy makers.

Santiago Schnell

By |

Santiago Schnell’s lab combines chemical kinetics, molecular modeling, biochemical measurements and computational modeling to build a comprehensive understanding of proteostasis and protein forlding diseases. They also investigate other complex physiological systems comprising many interacting components, where modeling and theory may aid in the identification of the key mechanisms underlying the behavior of the system as a whole.

Representation of the human protein-protein interaction network showing disordered (yellow) and ordered (blue) proteins.

Representation of the human protein-protein interaction network showing disordered (yellow) and ordered (blue) proteins.