
Yasser Aboelkassem
Assistant Professor, Digital Manufacturing Technology
Affiliation(s):
College of Innovation & Technology, University of Michigan-Flint
Prof. Aboelkassem’s laboratory uses stochastic multiscale computational models based on Brownian-Langevin dynamics principles to derive a coarse-graining model that can describe the cardiac thin-filament activation process during contraction. The model links atomistic molecular simulations of protein-protein interactions in the thin-filament regulatory unit to sarcomere-level activation dynamics. We first calculate the molecular interaction energy between tropomyosin and actin surface using Brownian dynamics simulations. This energy profile is then generalized to account for the observed tropomyosin transitions between its regulatory stable states. The generalized energy landscape then served as a basis for developing a filament-scale model using Langevin dynamics.

A Stochastic Multiscale Model of Cardiac Thin Filament Activation Using Brownian-Langevin Dynamics