Anne Draelos

Assistant Professor, Biomedical Engineering, Medical School

Affiliations: Computational Medicine & Bioinformatics, Medical School


Portrait of Anne Draelos


My research goal is to understand computation in large-scale neural circuits through adaptive perturbations and real-time inference. My lab develops scalable and efficient machine learning algorithms to adaptively build models of neural and behavioral data online, and uses them for understanding the mapping between multidimensional neural stimulations and complex behavioral outcomes. We primarily leverage statistical (e.g. Bayesian) optimization methods, as they are sufficiently scalable for real-time applications, though deep learning networks are catching up.

Research Areas

AI; ML and Statistical Inference
Algorithms and Codes
Biology Applications and Engineering
Modeling: Multi-scale; Predictive and Metamodeling
Numerical Analysis; Statistics and Stochastic Methods and Theories