Explore ARCExplore ARC

Yulin Pan

By |

Yulin Pan is an Assistant Professor in the department of Naval Architecture & Marine Engineering. He received his Ph.D. in mechanical and ocean engineering from MIT in 2016, with a minor in mathematics. His research is primarily concerned with theoretical and computational hydrodynamics, with applications in ocean engineering and science. He has made original contributions in nonlinear ocean wave mechanics, tidal flows, propeller and bio-inspired foil propulsion. Alongside research, he is also an active writer on popular science of fluid mechanics. His active research topics include:

  • Theoretical, computational and experimental investigations to understand the fundamental physics of wave turbulence
  • Prediction and understanding of nonlinear ocean and coastal wave phenomenon
  • Response of ships and offshore structures in wave field
  • Development of computation and optimization methods for propellers and flapping foils
  • Propagation of internal waves/tides at geophysical scales

Rohini Bala Chandran

By |

Rohini Bala Chandran is an Assistant Professor in the Department of Mechanical Engineering. Her research focuses on developing computational models integrated with experimental analyses to probe the interplay of heat and mass transfer, fluid flow, and chemical reactions that play a central role in a host of thermal, thermochemical, and electrochemical energy systems. Her group leverages high-performance computing to understand coupled transport and kinetic phenomena, and to perform multi-parameter optimization to design and operate efficient devices for energy conversion and storage. Current research activities in her group focus on solar fuels from water and carbon dioxide, thermal energy storage at high temperatures, and wastewater treatment.

Temperature distributions in a solar thermochemical reactor for water and carbon dioxide splitting predicted by computational modeling.

Yue Fan

By |

Yue Fan is an Assistant Professor in the Department of Mechanical Engineering. The primary research interest in his group is to provide a substantive knowledge on the mechanics and micro-structural evolution in complex materials systems under extreme environments via predictive modeling. In particular, they focus on describing highly disordered systems (such as glasses, grain boundaries, etc) from the perspective of potential energy landscape (PEL), and correlating materials properties with their underlying PEL structures. The ultimate goal is to facilitate the development of new science-based high performance materials with novel functions and unprecedented strength, durability, and resistance to traditional degradation and failure.

Evgueni Filipov

By |

Evgueni Filipov is an Assistant Professor in the Department of Civil and Environmental Engineering. His research interests lie in the field of deployable and reconfigurable structural systems. Folding and adaptable structures based on the principles of origami can have practical applications ranging in scale and discipline from biomedical robotics to deployable architecture.

His research is focused on developing computational tools that can simulate mechanical and multi-physical phenomena of deployable structures. The analytical models incorporate folding kinematics along with local and global phenomenological behaviors. Prof. Filipov uses finite element and  constitutive modeling to better understand how geometry affects elastic deformations and other physical properties of the deployable and adaptable structures. He is interested in optimization of such systems and large scale parametric studies to explore the design space and potential applications of the systems.

Elastic deformations of a deployable origami tubes (Filipov et al. PNAS 2015)

Elastic deformations of a deployable origami tubes (Filipov et al. PNAS 2015)

Angela Violi

By |

Angela Violi is a Professor in the Department of Mechanical Engineering, and adjunct faculty in Chemical Engineering, Biophysics, Macromolecular Science and Engineering, and Applied Physics. The research in the group of Violi is focused on the application of statistical mechanics and computational methods to chemically and physically oriented problems in nanomaterials and biology. The group investigates the formation mechanisms of nanomaterials for various applications, including energy and biomedical systems, and the dynamics of biological systems and their interactions with nanomaterials.

violinanoparticlegenesis

Allison Steiner

By |

Allison Steiner is a Professor of Climate and Space Sciences and Engineering. Her research focus is on the relationship between the atmosphere and the terrestrial biosphere to help understand the bigger question: how will the Earth respond to climate change? Her research integrates gas and particulate matter, including anthropogenic aerosols and natural aerosols such as pollen, into high-resolution models. She and her research group then compare these results with observations to develop a comprehensive understanding of regional scale climate and atmospheric chemistry.

Study of the sensitivity of two dust parametrizations of the regional climate model RegCM4 between 2007-2014 over the Sahara dn the Mediterranean. Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-434, 2016

Study of the sensitivity of two dust parametrizations of the regional climate model RegCM4 between 2007-2014 over the Sahara and the Mediterranean. Tsikerdekis et al. Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-434, 2016

Jesse Capecelatro

By |

Jesse Capecelatro is an Assistant Professor in the Department of Mechanical Engineering. His research is focused on developing large-scale simulation capabilities for prediction and design of the complex multi-physics and multiphase flows relevant to energy and the environment. To achieve this, his group develops robust and scalable numerical methods to leverage world-class supercomputing resources. Current research activities include adjoint-based sensitivity of turbulent combustion, modeling strongly-coupled particle-laden flows, and multiphase aeroacoustics.

Combustion in a turbulent boundary layer.

Combustion in a turbulent boundary layer.

Gregory Hulbert

By |

Gregory Hulbert is a Professor in the department of Mechanical Engineering. His research involves computational mechanics, structural dynamics, flexible multibody dynamics, dynamic response of composites and vehicle dynamics using finite element methods. He is also involved in the engineering education of mechanics.

Santiago Schnell

By |

Santiago Schnell’s lab combines chemical kinetics, molecular modeling, biochemical measurements and computational modeling to build a comprehensive understanding of proteostasis and protein forlding diseases. They also investigate other complex physiological systems comprising many interacting components, where modeling and theory may aid in the identification of the key mechanisms underlying the behavior of the system as a whole.

Representation of the human protein-protein interaction network showing disordered (yellow) and ordered (blue) proteins.

Representation of the human protein-protein interaction network showing disordered (yellow) and ordered (blue) proteins.

Liang Qi

By |

Professor Qi’s research fields are investigations of the mechanical and chemical properties of materials by applying theoretical and computational tools, including first-principles calculations, atomistic simulations and multiscale modeling. His major research interests are quantitative understanding of the intrinsic electronic/atomistic mechanisms for the mechanical deformation, phase transformation and chemical degradation (corrosion/oxidation) of advanced alloys and other structural/functional materials. Currently he is focusing on the studies of deformation defects and interfaces in materials under extreme conditions, such as high stress and/or chemically active environment, where the materials behaviors and properties can be dramatically different than those predicted by classical theories and models. He is also developing the numerical methods to integrate these electronic/atomistic results with large-scale simulations and experimental characterizations in order to design materials with improved mechanical performances and chemical stabilities.

A Jahn-Teller distortion signifies the onset of the shear instability for a body-centered-cubic crystal placed under tension. The symmetry breaking correlates with the intrinsic ductility of the material, and the strain at which it appears can be controlled by alloying.

A Jahn-Teller distortion signifies the onset of the shear instability for a body-centered-cubic crystal placed under tension. The symmetry breaking correlates with the intrinsic ductility of the material, and the strain at which it appears can be controlled by alloying.