Sabine Loos

By |

My research focuses on natural hazards and disaster information, everything from understanding where disaster data comes from, how it’s used, and its implications to design improved disaster information systems that prioritize the human experience and lead to more effective and equitable outcomes.

My lab takes a user-centered and data-driven approach. We aim to understand user needs and the effect of data on users’ decision making through qualitative research, such as focus groups or workshops. We then design new information systems through geospatial/GIS analysis, risk analysis, and statistical modeling techniques. We often work with earth observation, sensor, and survey data. We consider various aspects of disaster information, whether it be the hazard, its physical impacts, its social impacts, or a combination of the three.

I also focus on the communication of information, through data visualization techniques, and host a Risk and Resilience DAT/Artathon to build data visualization capacity for early career professionals.

The research approach our lab takes that centers users’ decisions to develop computational tools that support disaster resilience

Walter Mebane

By |

My primary project, election forensics, concerns using statistical analysis to try to determine whether election results are accurate. Election forensics methods use data about voters and votes that are as highly disaggregated as possible. Typically this means polling station (precinct) data, sometimes ballot box data. Data can comprises hundreds of thousands or millions of observations. Geographic information is used, with geographic structure being relevant. Estimation involves complex statistical models. Frontiers include: distinguishing frauds from effects of strategic behavior; estimating frauds probabilities for individual observations (e.g., polling stations); adjoining nonvoting data such as from in-person election observations.