Modeling the transmission of infectious aerosols

By | Feature, Research

Inhalation of micron-sized droplets represents the dominant transmission mechanism for influenza and rhinovirus, and recent research shows that it is likely also the case for the novel coronavirus.  Increasing evidence suggests that the transmission of infectious aerosols is more complex than previously thought. Coughing, sneezing and even talking yield a gaseous flow field near the infected person that is dynamic and turbulent in nature. Existing models commonly employed in simulations of aerosol transmission attempt to represent the effect of turbulence using random walk models that are often phenomenological in nature, employing adjustable parameters and inherently assuming the turbulent fluctuations ‘felt’ by a droplet do not depend upon direction. To design physics-informed guidelines to minimize the spread of this virus, improved predictive modeling capabilities for effectively tracking the aerosol paths are needed. Dr. Aaron M. Lattanzi and Prof. Jesse Capecelatro, from Mechanical Engineering and MICDE are tackling this problem by focusing on mathematical modeling of aerosol dispersion. They derived analytical solutions for the mean-squared-displacement resulting from systems of stochastic differential equations. A key element of their methodology is that the solution connects stochastic theory inputs to statistics present in high-fidelity simulations or experiments, providing a framework for developing improved models.

Simple simulation of aerosol dispersion from a single-point source. The grey, cone-like surface is the approximation using Force Langevin (FL) theory and the colored particles are from integration of Newton’s equations with stochastic drag forces.

Prof. Capecelatro’s research group develops physics-based models and numerical algorithms to leverage supercomputers for prediction and optimization of the complex flows relevant to energy and the environment. The main focus of their research involves developing robust and scalable numerical tools to investigate the multiphysics and multiscale phenomena under various flow conditions, like those that they study here. They recently submitted their findings to the Journal of Fluid Mechanics, and are continuing to work on this problem hoping it will help understand the transmission of COVID-19 and therefore help optimize current guidelines.

U-M draws global attention for MOOC: Problem Solving using Computational Thinking

By | Educational, Feature, Research

Problem Solving using Computational Thinking, a Massive Open Online Course (MOOC) launched by the University of Michigan in November of 2019, has already drawn more than 1,200 learners from around the globe. The Michigan Institute for Computational Discovery & Engineering (MICDE) and the University of Michigan Center for Academic Innovation partnered to create this course. The idea for this MOOC arose from the team’s recognition of the ubiquity of computation. However, the developers were equally keen to distinguish this offering from MOOCs on programming and to instead highlight how broader computational thinking also makes its presence felt in somewhat unexpected domains.

Using computational thinking, the MOOC challenges learners with a series of real-world examples, including how it is possible to help plan and prepare for a flu season–a subject that has gained particular relevance in the months following the launch of this MOOC, track human rights violations or monitor the safety of crowds.

While enrollment numbers are encouraging, the work being done by learners within the MOOC is most inspiring. For their final project, learners have applied the computational thinking strategies discussed throughout the MOOC to a wide array of noble social problems in hopes of finding cogent solutions.

Not surprisingly, there have been several projects that seek to address challenges related to COVID 19.

The MOOC’s Epidemiology Case Study walks the student through the process of building a communicable disease transmission model.

One learner wrote: “For the final project, I am assuming the role of a member of the team responsible to combat COVID-19 from India and I have to decide on what should be our strategy to fight coronavirus in India, be it the extension of a lockdown or any other important decision related to this pandemic.”

In another project, a learner assuming the role of a Wuhan pathologist wrote that they must “decide what the Chinese government’s strategy against coronaviruses” should be.

Learners addressing today’s most pressing societal concerns, such as COVID-19, exemplifies the transformative potential of open-access, digital, and distance education made possible by a MOOC.

Across the board, the MOOC has received tremendously positive reviews, with an overall course rating of 5 out of 5 stars. One learner, in particular, wrote in their course review: “I really enjoyed this course! It got me prepared to study for an entry into a career working with computers!!” Another learner simply stated: “Fantastic, loved it!”

The developers of this MOOC are drawn from the School of Public Health, the College of Engineering, the School of Education and MICDE. Problem Solving using Computational Thinking is available in Coursera through Michigan Online. To learn more please visit online.umich.edu/courses/problem-solving-using-computational-thinking/.

U-M modeling epidemiologists helping navigate the COVID-19 pandemic

By | Feature, News, Research

[top] Screenshoot of the Michigan COVID-19 Modeling Dashboard (epimath.github.io/covid-19-modeling/); [bottom left] Marisa Eisenberg (Epidemiology, Complex Systems and Mathematics); [bottom right] Jonathan Zelner (Epidemiology).

The COVID-19 pandemic is producing massive amounts of information that more often than not lead to different interpretations. The accurate analysis of this daily input of data is crucial to predict possible outcomes and design solutions rapidly. These can only be achieved with expertise in modeling infectious diseases, and with the power of computational science theory and infrastructure. U-M’s Epidemiology Department, in the School of Public Health, has a very strong cohort of researchers who work on mathematically modeling the dynamics of infectious diseases, the analysis of these models, and large scale computer simulations — all to understand the spread and mitigation of pandemics. They are applying their long experience and expertise to the current COVID-19 outbreak, aiding the government make informed decisions, and helping media outlets produce accurate reports for the general public. Marisa Eisenberg, Associate Professor of Epidemiology, of Complex Systems, and of Mathematics, and her colleagues are using a differential equation transmission modeling approach to analyze scenarios and generate short-term forecasts for the COVID-19 epidemic in State of Michigan. They are communicating directly with the Michigan Department of Health and Human Services and providing critical tools, like the Michigan COVID-19 Modeling Dashboard, to inform decision-making. Prof. Eisenberg’s team is helping to forecast the numbers of laboratory-confirmed cases, fatalities, hospitalized patients, and hospital capacity issues (such as ICU beds needed), and examining how social distancing can impact the spread of the epidemic. Prof. Jonathan Zelner, whose research is focused on using spatial and social network analysis and dynamic modeling to prevent infectious diseases, is part of a group helping map the outbreak in Michigan. He also has provided valuable insights to journalists contributing to a better understanding of the situation, including what made New York City so vulnerable to the coronavirus (NYT), the role of wealth inequality during epidemics (CNBC) and what professions and communities are particularly vulnerable to infection (NG). 

Professors Eisenberg and Zelner are not alone in this fight. Many more researchers from U-M’s School of Public Health and throughout campus have risen to the challenges posed by this pandemic. 

Combat COVID-19 using newly available HPC resources: COVID-19 High Performance Computing Consortium

By | Feature, HPC, News, Research

COVID-19 High Performance Computing Consortium

On March 23, 3030 the White House announced the launch of a new partnership that aims to unleash U.S. supercomputing resources to fight COVID-19: the COVID-19 High Performance Computing Consortium. The goal of the Consortium is to bring together the Federal government, industry, and academic leaders to provide access to the world’s most powerful high-performance computing resources in support of COVID-19 research. The access to these resources has the potential to significantly advance the pace of scientific discovery in the fight to stop the virus.

To request access to resources of the COVID-19 HPC Consortium, you must prepare a description, no longer than two pages, of your proposed work. To ensure your request is directed to the appropriate resource(s), your description should include the following sections. Do not include any proprietary information in proposals, since your request will be reviewed by staff from a number of consortium sites. It is expected that teams who receive Consortium access will publish their results in the open scientific literature.

Learn more at https://covid19-hpc.mybluemix.net .

 

 

 

 

The NSF Computational Mechanics Vision Workshop

By | Events, Research

Over October 31 and November 1, 2019 MICDE hosted the 2019 Computational Mechanics Vision workshop that aimed to gather and synthesize future directions for computational mechanics research in the United States. Attended by more than 50 experts in various sub-disciplines of computational mechanics from across the country, including five National Science Foundation Program Directors, the group spent a day and a half brainstorming about the future of computational mechanics and defining new paradigms, methodologies and trends in this exciting and vast field. The workshop focused on four emerging areas in Computational Mechanics: Machine Learning, Additive Manufacturing, Computational Medicine, and Risk and Uncertainty Quantification. Operating through open discussions on talks by experts from within and beyond Computational Mechanics, and breakout sessions on the above four topics, the workshop participants arrived at a series of recommendations that could drive NSF’s investments in this field for the next decade and beyond.

To learn more about the event please visit micde.umich.edu/nsf-compmech-workshop-2019/.