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Executive summary  

Computational mechanics (CM) is a diverse field with different methodologies and techniques that 
underlie the solutions of fundamental problems in a variety of application areas.  CM techniques 



have, over the past 50 years, enabled breakthroughs in fields ranging from materials and 
structural engineering to electronics and bioengineering, in mathematics and high-performance 
computing. Because of the constant need for predictive computational modeling in both 
established and newly emerging research fields, CM will continue to play a key role in many future 
scientific developments.  
  

An organizing team of four[1] experts was assembled to develop a workshop that included more 

than 50 participants from the CM community, who gathered for a 1.5-day workshop in Ann Arbor, 
Michigan on October 31 and November 1, 2019.  The workshop objective was to solicit and 
synthesize directions for computational mechanics research and education in the United States 
over the next decade and beyond.  
  
Four themes were selected for discussion, two vertical and two horizontal. The vertical themes of 
Machine Learning (ML)/Big Data and Uncertainty Quantification (UQ) and Risk focused on 
enabling technologies. The horizontal themes of Manufacturing and Medicine focused on 
application areas. As scientific advances in these emerging areas are coming to the forefront, it 
is an opportune time for the computational mechanics community to face research and 
educational challenges and opportunities, and for NSF to make investments to accelerate 
progress in these areas. Therefore, each of these focus areas was discussed in detail to identify 
critical gaps and problems that need to be addressed to move the field forward, and to identify 
other areas where cross-fertilization may be particularly impactful. 
 
In addition to the four thematic areas, which have been organized into subsections labelled 
Overview, Technical Knowledge Gaps and Emerging Areas of Inquiry, we direct the reader’s 
attention to a short final section on Overarching Themes and Recommendations. Across the four 
themes the participants expressed the importance of establishing repositories for data, codes and 
manuals. It was felt that terminology and language remain a hurdle to cross-thematic 
understanding, and that the establishment of dictionaries would be a notable advance. As new 
paradigms, such as ML and Risk become more integrated with research, the need for new funding 
models will become sharper. Finally, continued evolution of CM as a field that builds upon these 
themes will not be possible without radically new educational initiatives. 
  
We hope that readers will not only find this report informative, but will begin to address the open 
questions and challenges identified herein. It is clear that computational mechanics has significant 
potential for enabling transformative breakthroughs in a range of scientific disciplines, and in 
particular the areas identified in this report. 
 

 

[1] Caglar Oskay transitioned to an NSF program director position during the course of workshop 

organization. 

 

Introduction 

CM is a diverse field with different methodologies and techniques that have driven solutions to 
fundamental engineering problems in a range of application areas.  These techniques have, over 
the past 50 years, enabled breakthroughs in fields ranging from structural engineering to 
electronics and bioengineering [1].  Studies on the mathematical basis of computational 



mechanics methods have also driven developments in linear algebra, optimization, functional 
analysis and tensor calculus. The origins of and advances in high-performance computing are 
interwoven with developments in computational mechanics. Because of the continuing need for 
predictive computational modeling in established research fields and the rapidly growing demand 
for computation in newly emerging fields, CM will play a key role in many future scientific 
developments.  However, although CM has long been central to the developments listed above, 
it faces new challenges and opportunities from the rise to prominence of artificial intelligence, built 
infrastructure, additive manufacturing, and an urgent focus on health. This has created a 
significant need to identify the future challenges and research and educational opportunities 
facing the CM community in these areas. 
  
There have been several recent NSF-sponsored workshops whose scopes have been relevant 
and complementary to this meeting. These workshops have focused on verification and validation 
of computational models [2], and the application of cutting-edge material models and 
computational algorithms to emerging problems in materials and manufacturing [3].  
  
The current workshop was significantly broader in scope than the recent workshops mentioned 
above. The focus themes of this workshop, i.e. ML/big data, manufacturing, risk/uncertainty-
based engineering (including climate, built infrastructure, natural disasters, etc.), and medicine, 
have been discussed in other, recent forums. However, as this report details, the discussion in 
this workshop was not narrowly limited, such as, for instance, to big data in materials and 
manufacturing. Significant links were also made to problems in medicine, infrastructure, climate 
change, natural disasters, energy, and other fields.  Similarly, while verification and validation is 
an important and established subfield in CM, it naturally arose within the context of each focus 
theme we discussed.  For this reason, we believe that this workshop will build upon and 
complement other such meetings, while breaking new ground in many other topics and directions. 
  
This workshop and report were organized to focus on open challenges and opportunities in these 
focus areas that, if resolved, could enable transformative scientific and engineering 
breakthroughs.  Due to the diverse physical phenomena underpinning the focus areas, as well as 
the different types of computational approaches that are either currently being deployed or will 
need to be deployed in the future, workshop participants with a diverse range of backgrounds and 
disciplinary expertise were invited to participate.  Indeed, workshop participants possessed 
expertise in a wide range of fields, including mechanical, civil, aerospace, biomedical and 
materials engineering, manufacturing, multiscale and multiphysics modeling, uncertainty 
quantification, verification and validation, big data, artificial intelligence and high performance 
computing.  
  
The structure of the workshop is described below. Internal speakers presented the view from 
within the field of CM, while external speakers took either a broader perspective, or adopted a 
specific standpoint from outside what is typically considered to be the current extent of the field. 
  
WORKSHOP PRESENTATIONS 

1. Big Data/Machine Learning 
1. Internal speaker:  Krishna Garikipati, University of Michigan 
2. External speaker:  Nathan Kutz, University of Washington 

2. Manufacturing, with a focus on Additive Manufacturing 
1. Internal speaker:  Tarek Zohdi, University of California, Berkeley 
2. External speaker:  Wayne King, The Barnes Group Advisors 

3. Uncertainty Quantification and Risk 
1. Internal speaker:  Roger Ghanem, University of Southern California 



2. External speaker:  Don Estep, Canadian Statistical Sciences Institute 
4. Medicine 

1. Internal speaker:  Ellen Kuhl, Stanford University 
2. External speaker:  Gerard Ateshian, Columbia University 

  

The workshop began with eight presentations, with two speakers in each of the four focus areas, 
as enumerated above.  For each focus area, a speaker internal to the CM community first spoke 
to summarize ongoing efforts within the CM community, as well as a discussion of outstanding 
challenges.  Afterwards, an external speaker presented a different perspective on existing needs, 
challenges and opportunities. The talks were structured in this fashion to entertain differing 
viewpoints on each focus area, and there were open discussions after each presentation amongst 
all workshop participants. 
  
After the above sessions organized around presentations, the workshop participants broke into 
four groups for focused discussion on each focus area.  Participants were provided discussion 
questions in advance, which were common to each focus area.  These questions were:  (1) What 
are the areas of inquiry in this space that are currently being investigated by the CM community?  
Areas of inquiry could be fundamental methodologies or fundamental questions. (2) Which of 
these areas of inquiry are important but receiving relatively little support? (3) What areas of inquiry 
do you see emerging in this theme over the next 5-10 years? (4) What are some of the 
connections between these emerging areas and fundamental questions in the mechanics of 
materials? 
  
After ample discussion time (four hours spread over two days) by each breakout group, all 
workshop participants reconvened to discuss the findings and recommendations of each group. 
The recommendations and findings of each breakout group, augmented by the subsequent 
discussion amongst all participants, forms the basis for the recommendations for future research 
presented next. 
 

Summary of Focus Areas 

 
Machine Learning 
 
1:  Overview 
 
Machine Learning (ML) has a rather natural relevance to computational mechanics. Broadly, this 
connection comes into play for handling deluges of data--whether these data are to inform 
computational mechanics, or are produced by it. In the first scenario, machine learning 
approaches can describe phenomena in complex systems where we do not yet have a good 
physical understanding. In the second scenario, it can provide new and efficient tools and 
frameworks to organize and interpret large scale computed data. 
  
The CM community has already begun using ML for a variety of applications.  Some of the most 
prominent are: (1) Modeling constitutive and phenomenological relationships. While the 
development of experimentally-guided models has been central to mechanics, the volume and 
complexity of data used for this purpose has heretofore been rather modest. From neural 
networks to Gaussian processes, and with techniques stretching from active to reinforcement 
learning, the bridge between experimental data and constitutive models can now be built with 
previously unapproachable sophistication. (2) Discovering governing physics (i.e. PDEs) or for 



system identification. This is one of the most compelling fronts unifying ML and CM.  Inverse 
modeling already incorporates the field of system identification: the pinpointing of physical 
mechanisms, or even entire systems of PDEs that govern spatially and temporally varying data.  
The holy grail in this regard is the discovery from data of physics (perhaps as PDEs) that was 
previously unknown. (3) Accelerating solutions to PDEs via physics-constrained/informed ML.  
Here, the CM community has been solving initial and boundary value problems with ML methods 
that circumvent traditional numerical techniques such as the finite element method.  Now, ML 
methods, from neural networks of all types to genetic algorithms and Gaussian processes, 
present the possibility of learning solutions to PDEs.  In particular, work has focused on 
accelerating solutions via surrogate models that replace expensive, high-fidelity simulations in 
prescribed regimes of parameters and domains. 
 

2:  Technical Knowledge Gaps 
 
A key challenge is in analyzing and characterizing different ML methods.  For example, what are 
the tradeoffs among different ML approaches, and what are the guidelines to choosing the correct 
one?  How reliable and robust are the ML solutions, and what are the convergence rates for 
different ML methods?  What are the error bounds for ML solutions, and can we quantify the 
uncertainty in the solutions? 
  
There are also issues related to understanding interpretability, predictability, and generality of ML 
models in CM, which is important for connecting the results and performance of ML models with 
physics, or for embedding known physics into ML. Furthermore, ML networks are very good at 
data interpolation, but it is less clear whether they are capable of extrapolating to out-of-training 
regimes or when data are sparse. This may be particularly relevant for characterizing failure using 
ML (which may necessitate involvement of UQ and risk analysis), particularly since failure points 
often have sparse data to train an ML model.  Overall, challenges and opportunities remain 
regarding the ability to gain scientific insight and discovery using ML. 
  
The issue of using ML for scale-bridging, i.e. to detect and capture features at different scales, or 
to use ML to decouple physics at different length and/or time scales, is a key challenge. There 
are also opportunities in using the ML modeling error to adaptively redesign the ML architecture 
using physics-based knowledge to improve the property predictions. Overall, there is a pressing 
need to integrate ML, physics-based modeling and experiments, and a workflow for closing the 
loop among them (i.e. the design of high-throughput experiments for supporting ML). Finally, there 
are natural but unexplored links between UQ for ML and ML for UQ. This tight integration between 
ML and UQ would support inverse problems while preventing overfitting and enabling the 
treatment of noisy and sparse data regimes. This is crucial for risk and failure analysis. 
  
Another challenge relates to data sharing and the creation of challenge and/or benchmark 
application problems for the CM community.  In particular, it is important to ensure diversity of 
benchmark problems of different sizes, with good coverage of the application space, and of 
relevance to both research and student education.  These benchmarks should also include a 
range of metrics for comparing various ML methods beyond just accuracy (e.g. uncertainty, 
robustness, reliability, speed, etc.).  This would enable and grow the contribution of the CM 
community, while promoting these sharing platforms and challenge problems at conferences and 
with neighboring communities (e.g. applied math).   
 

3: Emerging Areas of Inquiry 
 



Over the next 5-10 years, we foresee the emergence (or growth) of the following main themes 
under ML in CM:  (1) The acceleration of solutions to PDEs; (2) the emergence of AI in 
manufacturing (i.e. smart manufacturing); (3) the emergence of ML in mechano-biology; (4) the 
emergence of ML in bridging physics across disparate length and time scales; (5) the integration 
of ML, physics-based modeling, and experiments.  
  
With regards to the intersection of ML and fundamental questions in mechanics, we foresee the 
emergence (or growth) of the following main themes:  (1) The ability to predict material or 
structural behavior under extreme conditions. The complexity of failure with multiscale and 
multiphysics processes presents opportunities for application of a range of ML frameworks and 
specific techniques. A challenge in this regard is the sparsity of data around failure events, and 
the challenge of acquiring more data. (2) The ability to predict stochastic phenomena.  Turbulence 
is a leading example in this regard, and one in which ML methods already have made significant 
inroads. (3) The ability to rationally design functional materials driven by high-dimensional and 
complex dependencies. (4) Design optimization: High-dimensional optimization problems are 
particularly well-suited to ML. (5) Prediction of structure-function relationships: The 
expressiveness of ML methods at representing high-dimensional and complex dependencies is 
an advantage over other approaches. 
  
Overall, we recommend the following action items to facilitate bringing ML into the CM 
mainstream: (1) Data sharing and creation of challenge application problems for the community; 
(2) making research codes available to the public; (3) unifying language and terminology, while 
building “dictionaries” for terminology from other fields and communities; (4) educating the CM 
community, while strengthening the themes of statistics and probability in undergraduate and 
graduate student education. 
 

 

Medicine 
 

1:  Overview 
 
Computational medicine can be defined as physics and data-driven computation applied to gain 
fundamental understanding in biology/physiology and to patient care (detection, diagnosis and 
treatment of disease, and prognosis) in medicine. Problems in computational medicine can often 
be of two very different types. 
  
On one hand, there are problems where the goal is to understand in detail the biology/physiology 
of a given system. For these problems, there is a plethora of data, the ability to collect data of the 
type that is believed to be the most relevant, and minimal time restrictions with regards to scientific 
inquiry. On the other hand, there are problems that emanate from medicine and are of a 
translational nature, where the goal is to improve a patient’s health outcome. Here, the data is 
collected in a clinic independently of computational mechanics researchers. This in turn places 
constraints on the type of models that can be used to solve these problems. 
  
Both of these general types of problems are challenging to solve, and computational mechanics 
researchers have accordingly realized that a piecemeal approach to solving them does not work. 
This has led researchers to develop methods and techniques that couple biology and medicine 
with other fields of computational physics like mechanics, electromagnetics and biochemistry. 
Researchers have also recognized that these problems are often multiscale in nature, where 
responses at the cellular, tissue and organ scales all interact with each other and have a critical 



role to play in the final outcome. Finally, due to the heterogeneous nature of biological systems it 
is important to infer parameters that are specific to a given subject, organ and tissue. This has led 
researchers to consider the use and development of techniques of inverse problems in order to 
infer these parameters.  
 

2:  Technical Knowledge Gaps 
 
While some biological systems, such as the cardiovascular system and brain, have (deservedly) 
received significant attention, other important ones have not. Lung mechanics, the venous 
system, the reproductive system, and skin are examples of systems that have not received the 
same type of attention and are ripe for further in-depth studies. 
  
Due to the dramatic recent growth in the number and types of implants that are now routinely 
used in the human body, there are important questions to be addressed on how implants and 
devices interact with native tissue. Examples include heart implants interacting with soft tissue, 
electrodes in the brain, and stent meshes that tear through vasculature. 
  
There are broader issues that connect to all of the open application areas mentioned above.  For 
example, there is an untapped potential in formulating studies that utilize the data already 
collected in studies sponsored by agencies like the NIH. Furthermore, imaging, which is 
fundamental to diagnosis and insights into biological systems, contain a wealth of physical data.  
It will be of interest to formulate studies that can use medical images, which are obtained through 
elastography and contrast enhanced imaging, to infer the physics of biomedical systems. This 
also demonstrates the importance of conducting scientific studies where computational modeling 
and experiments are tightly linked. 
  
Finally, there is a need to develop curated data sets for benchmarks and validation. These could 
be general or organ-specific. This could be an area for separate investigation and discussion 
through another workshop, while noting that the ML community in particular has very effectively 
developed such benchmarks in fields such as plasticity and fracture mechanics.   
 

3:  Emerging Areas of Inquiry 
 

Some of the emerging growth in computational medicine dovetails with some of the other 
workshop themes, in particular ML and UQ/risk.  ML will intersect with computational medicine 
because the complexity of phenomena in medicine and biology is such that it is almost impossible 
to develop predictive physics-based models for every problem of interest. Thus, one has to rely 
on a combination of data and physics-driven models. Risk will intersect with computational 
medicine because the decisions made in computational medicine can have a profound impact (Is 
a given tumor is cancerous? Will a given treatment be effective? What is the underlying cause for 
a disease? Etc.). Thus, it becomes necessary to quantify uncertainty or risk in any prediction. 
  
In addition to these intersectional themes, broad challenges were identified.  (1) Is it possible to 
map from animal or lab-on-chip models to humans? This is a challenging problem, but one with 
a tremendous potential payoff, as it shares features with the fields of transfer learning and domain 
adaptation in machine learning. (2) How can modeling across the disparate biological timescales 
be achieved?  Molecular time scales are ~10-9 s and cellular time scales are ~100 s, while aging 
happens on timescales of ~109 s, thus implying a total range ~1018.  While it is recognized that 
most problems in biology and medicine span multiple spatial scales, not much attention is paid to 
this tremendous range of temporal scales. (3) The study of emergent properties: mathematically, 



these appear as bifurcation problems. For example, a small perturbation during cell division 
leading to organ buckling. (4) Inferring fields and system behavior: while current research has 
focused on inferring parameters, future trends point to inferring entire biophysical fields and 
systems from measurements. (5) The problem of computational drug delivery and efficacy 
improvement, where surface properties at the nanoscale are manipulated to design more effective 
drugs. (6) Finally, optimization at larger scales to achieve bioprinting and design of tissue with 
desired properties is of growing interest. 
  
The themes discussed in the previous paragraph include research in some fundamental areas of 
applied, theoretical and computational mechanics. These include the problems of growth, 
remodeling and aging and fracture/fatigue in biological environments.  One very interesting 
approach aims to use synthetic biology as a deconstructionist tool to study mechanics. Broadly 
speaking, this involves using tools of synthetic biology to design systems where one can isolate 
effects and answer some fundamental questions related to biology and medicine. In addition, 
mechanics coupled with other physics (so-called coupled-field or multiphysics phenomenon) still 
has a long way to go in terms of modeling biological systems. Finally, along the same lines, there 
are many interesting biological processes, like thrombosis, cell migration, morphogenesis, for 
which continuum mechanics-based models are still in their infancy, and better and more useful 
models are required.  
 

Additive Manufacturing 
 

1:  Overview 
 

Computational mechanics research of relevance to additive manufacturing (AM) can be classified 
into five areas: (1) Process modeling; (2) product performance modeling; (3) design and 
optimization of the manufacturing process or the product performance; (4) preprocessing – 
modeling of how the constituent material (e.g. powder) is processed; (5) postprocessing – 
modeling of recrystallization, hipping, sintering, etc. to achieve better or more uniform 
performance. While AM is a highly researched area, it is estimated that less than 10% of AM 
literature is on modeling and simulation2. The physics of AM processes and the possible design 
spaces enabled by AM have become hugely complex and the lack of fundamental, 
computationally-driven research has prevented AM from being fully adopted today. 
  
Reviewing the state of the art literature today, there is active research in studying the 
microstructures (e.g. grain structure, porosity/void evolution, grain remodeling, dendrites, and 
secondary phases) and their modeling to predict material performance. In the context of 
mechanics and modeling of AM processing, the majority of literature has been dedicated to the 
thermal residual stresses and distortion although the current capability cannot yet predict thermal 
stress or strain. The second common area of investigation is in process modeling such as 
modeling the melt pool, energy source and phase transformation. While some of the pre-AM 
research in material thermal physics and welding provides useful information to AM processing, 
there are AM-specific issues that the focused efforts have not resolved.  Figure 1 summarizes the 
current literature survey results on AM modeling and simulation. 
  
Another area of active research discussed is topology optimization (TO). Topology optimization 
has been developed and researched independent of AM and the current areas of interest are in 
the design of coupled physics and coupled scale problems. Of course, the topologically optimum 
designs can be manufactured using traditional manufacturing techniques. However, TO has been 
identified as an ideal design method that can maximally exploit the flexibility of AM.  The recent 



rise of multiscale topology optimization is said to have been motivated by AM which can 
manufacture a wide range of scales without significantly added complexities. Much of TO 
research, however, is somewhat independent of AM and research in TO specifically for AM 
accounts only for a small proportion of TO research. There are many outstanding AM design 
challenges. 

 
Figure 1. Literature survey of AM modeling and simulation2, © The Barnes Group Advisors LLC 
  

 
2 King W.E. (2019) “Computational mechanics and additive manufacturing as seen from the 
outside of the core computational mechanics community”, presented at NSF Computational 
Mechanics Workshop, Ann Arbor MI. 
  

2:  Technical Knowledge Gaps 
 

The current state of computational mechanics in AM is that there is substantial funding and 
activities in the commercial sector to adopt AM in production. These are primarily seen in industrial 
and government funded activities and the rapid emergence of AM related software. However, 
there is a lack of fundamental understanding and basic research, leading the current state of the 
art software to be unpredictable and unreliable, using the empirical and experimental data at best.  
Therefore, all areas of inquiry in fundamental sciences at a basic research level are currently 
receiving little or no support, and is in great need to be supported to move forward AM in practice. 
  
For each of the five specific classes of AM related computational mechanics research, the areas 
which require further inquiry are identified below.   
 
For process modeling: (1) Residual stress and distortion, sag modeling; (2) thermal modeling 
(multiphysics); (3) microstructure models (grain structure, porosity/void evolution, grain 
remodeling, dendrites, and secondary phases, etc.); (4) powder dynamics and slurry dynamics 
including delivery systems; (5) repeatability and reproducibility; (6) melt pool, energy source, 
optical, phase transformation modeling; (7) material-interface modeling; (8) development of 
process models that are able to bridge length and time scales present in metal AM; (9) process 
models that can predict defects in the AM build. 
  
For performance: (1) Microstructure to performance modeling; (2) in-situ NDE and real time 
optimization of manufacturing parameters; (3) multiscale methodologies to address lack of scale 
separation (for homogenization) in AM. 
  
For design and optimization: (1) Process aware TO and its integration in the overall CAD design; 
(2) top down systems approach to design of integrated material-structural systems; (3) avoiding 
and/or optimizing for support structures; (4) functionally graded materials and multiple materials; 



(5) mesostructure design (architected materials); (6) design and control of microstructures (grain 
level); (7) AM specific uncertainty quantification and risk in optimization; (8) digital threads;  
  
For preprocessing:  (1) modeling of powder processing; (2) supply chain  
 
For postprocessing:  modeling of (1) recrystallization; (2) hipping; (3) sintering. 
  
Of this long list of topics, the following areas have been identified as receiving minimal support: 
(1) Performance prediction from complex multiscale multiphysics modeling.  The level of 
complexities is such that the current computational cost is prohibitively high for practical 
applications. (2) Processing modeling including melt pool, energy source, optical and phase 
transformation modeling; (3) topology and multiscale optimization. 
 

3:  Emerging Areas of Inquiry 
 
There is a significant need for fundamental research to predict material properties and 
performance, which is not addressed by existing applied research. The challenges are highly 
complex requiring an integrated and coupled modeling of nonlinearity, solid and fluid mechanics 
as well as powder and slurry dynamics and phase transformation.  The current state of the art in 
high-fidelity modeling is computationally extremely demanding and limits its application and 
practical use. 
  
The current state of the art is also not capable of predictive modeling and this inherently limits 
AM’s application, especially in safety critical engineering. For AM to be fully exploited in 
engineering, a predictive modeling capability is critically important, but it is currently limited by the 
lack of fundamental understanding.  The complexity of the challenges is such that it requires 
collaborative and integrated multidisciplinary team approaches. It would benefit from 
establishment of an open research platform (software, hardware and databases) that enables 
cooperative research and a common ground for building up the complexity.  The appropriate use 
of modern methods such as artificial intelligence and ML may provide useful means to manage 
the complexity of the AM process, for example in detecting defects and understanding the residual 
stress in the initial state. 
  
In order to fully utilize AM, a design optimization method is needed. Here, topology optimization 
is considered the ideal design method. Such physics-based design methods require reliable 
computational methods which can reliably and robustly offer accurate and stable sensitivity 
analysis in a computationally efficient and repeatable manner. Given the inherent uncertainties 
associated with AM processing, research is needed to develop topology and design optimization 
methods that can account for the uncertainties and mitigate the risks. In addition, AM presents 
new challenges in terms of manufacturing constraints and requirements. More attention is 
required in design optimization research such that the design process and method are aware of 
each other. 
  
In addition to these challenges, there are several important directions that emerged connecting 
CM, AM and mechanics of materials:  
 

(1)Rethinking multiscaling of mateials and structures in the context of AM. AM inherently 
integrates material processing and structural design. These two concepts cross unprecedented 
length and time scales, and computational mechanics and design optimization are needed to 
integrate the understanding of scales as well as multiple physics and multiple materials. This 



introduces a new paradigm shift in design – towards an integrated material-structural system. 
This departs from the traditional design philosophy of decoupling material processing and 
structural design, where material design and processing and structural designs are done in a 
serial way. AM requires an integrated understanding of these traditionally separate disciplines 
and will require new paradigms to integrate materials and structural designs. The complexity of 
such multiscale mechanics also means that providing the forward tools and relying on human 
intuition to understand and design is no longer sufficient. These complex multiscale behaviors 
go  beyond intuitive understanding. Research is needed to develop design optimization methods 
based on computational mechanics and forward models in order to fully explore the hugely 
expanded and complex design spaces. 
 
(2) Real-time monitoring and process redesign. CM is needed to support on-line monitoring and 
in-situ non-destructive evaluation (NDE) to assess the design and determine the optimum 
process. In-situ NDE for AM is underway, but without fundamental understanding of the 
mechanics and processing, it is unclear how best to utilize the data to affect the processing. 
This kind of computation also requires new and innovative computing tools that can provide 
real-time understanding to redesign the processing parameters such that the final part meets 
the requirements. 

  
(3) New perspectives on voids/defects (defect minimization and mitigation).  The creation of voids 
is an inherent part of AM and can degrade material performance.  Research efforts have thus 
been focused on minimizing and eliminating voids hence reducing the property variations. 
However, a different perspective is that the voids (what are traditionally considered defects) are 
unavoidable.  With this new perspective, future research can shift to predicting and managing the 
voids, reducing the material property variations, design in the property variations where they 
matter, and designing against the uncertainties introduced by the voids. This new set of 
computational mechanics approaches can widen the applications of AM. 
  
While many possible paths forward are presented here, the importance of integrated experimental 
and computational research should not be understated. This naturally incorporates UQ and 
verification and validation, which is pertinent given the complex challenges AM presents. 
Furthermore, this implies that future CM research in AM would benefit from a team-centric 
approach, which is also a requirement to enable the fundamental understanding of the coupled 
multidisciplinary and multiscale nature of AM processing. Therefore, successful research to gain 
fundamental scientific understandings of CM in AM in the future would need to engage multiple 
investigator teams integrating multidisciplinary experts. 
  
Finally, it is important to note the democratization of manufacturing that AM has enabled.  While 
the above discussion makes clear the unprecedented scale of scientific challenges in the field, 
and somewhat cautions against currently employing AM in practical engineering design, there are 
already growing internet communities that share free topology optimization software, AM STL 
model file repository sites and YouTube videos on how to optimize and achieve the best designs. 
AM coupled with TO is likely to have a large societal impact.  Computational modeling to 
understand the societal impact and potential risks to the society may thus prove to be beneficial. 
This requires multidisciplinary research with social sciences and/or humanities, and is aligned 
with two of the NSF’s 10 big ideas: Future of Work at the Human-Technology Frontier and 
Growing Convergence. 
 

UQ/Risk 
 



1:  Overview 
 
Uncertainty quantification (UQ), once an emerging area of computational science, has now 
become a fundamental underpinning of computational mechanics. A broad range of topics within 
UQ has therefore been or is currently being investigated, covering probabilistic modeling (How 
can one represent random input quantities?), uncertainty propagation (How can one accurately 
and efficiently propagate random inputs through a model?), and identification (How can one 
calibrate a set of model- and hyper-parameters, based on some digital or physical observables?) 
and validation aspects (How can one assess the relevance of the aforementioned strategies?). 

 

2:  Technical Knowledge Gaps 
 
From a stochastic modeling perspective, the integration of constraints (such as boundary 
conditions, or symmetries) in stochastic reduced-order models and surrogates, together with the 
treatment of non-stationary, non-Gaussian models, are needed to advance physics-based UQ. 
While the design of robust stochastic solvers (including, e.g., quadrature schemes for collocation 
methods) and sampling algorithms for high-dimensional (i.e. with many degrees of freedom, and 
also many random variables) computational models has been a very active research area over 
the past decade, efforts are still required to attack realistic problems that combine multi-physics 
information across scales and (space and time) domains. For UQ to achieve further adoption 
beyond academic studies, these efforts should be supplemented with the development of 
appropriate error bound definitions that are scalable to large-scale applications. 
  
Moreover, the development of UQ strategies adapted to rare events (in terms of modeling, 
sampling, and data integration) is necessary to enhance current practice in risk analysis and 
related fields (such as decision making under uncertainty). Finally, there is an absence of 
standards regarding benchmark validation, reproducibility, and more generally the definition of 
“well-posed” UQ problems, which is compounded by limited knowledge and skills on core topics 
such as data science, statistics, and uncertainty quantification. The latter aspect points to the 
need for new curricular considerations at the undergraduate and graduate  levels, while 
simultaneously making the field-specific language more accessible for non-specialists. 
 

3:  Emerging Areas of Inquiry 
 

The robust treatment of model uncertainties (as opposed to parametric uncertainties, which are 
traditionally introduced to model variability in the parameters of the computational model) and 
data-driven, UQ-based physics and structure discovery are seen as two emerging topics in 
stochastic modeling.  Example application areas for model uncertainties are closure for flow 
problems, and the uncertainties introduced by different types of interatomic potentials in molecular 
dynamics simulations, while an emerging example for structure discovery concerns the 
identification of constitutive models based on limited data.  In addition, the proper treatment of 
non-stationary, non-Gaussian fields will be necessary to perform uncertainty quantification in 
multi-scale systems, for example in materials processing in additive manufacturing applications.    
  
There are important challenges to resolve in data assimilation, where there is a need to develop 
integrated frameworks and methodologies to integrate physical experiments within UQ 
frameworks, for example in the context of Bayesian approaches or probabilistic learning.  In  this 
context, the treatment of partially observed systems (for example a 3D system characterized by 
2D measurements as in the case of digital image correlation) remains a challenging problem for 
which robust methodologies for identification and updating have to be developed. Finally, for UQ 



to impact industrial applications, a stronger integration of UQ in the engineering workflow and 
design process, which could be achieved through the development of community software, is 
essential. 
  
There exist numerous connections between the above challenges, and the potential to tackle 
fundamental questions in mechanics of materials if they are addressed.  First, there is an 
opportunity to strongly integrate UQ into existing design standards.  A second opportunity 
concerns accounting for uncertainty in model discovery and model error assessment, with specific 
examples being:  (1) model updating, for example through adaptive model selection based on 
plausibility, (2) the development of predictive models at the material and system levels (in the 
form of constitutive relations for the former case), (3) the identification of critical variables by 
means of global sensitivity analyses, (4) the propagation of variability through length and time 
scales, and (5) modeling for configurations far from equilibrium (e.g., modeling at high strain rates, 
accounting for geometric and/or material nonlinearity).   
  
Furthermore, in connection with other workshop themes, it was recognized that knowledge in 
mechanics of materials should be used to derive meaningful constraints for different application 
areas involving machine learning techniques. Finally, progress in stochastic modeling could lead 
to enhanced statistical modeling of heterogeneous media and defects, and would enable the 
solution of problems in which data is obtained through different modeling assumptions (e.g. 
predictions obtained with different mesh densities). 

 
Finally, it is important to emphasize the NSF GOALI program, especially with respect to the 
integration of state-of-the-art UQ techniques in workflows. The importance of encouraging 
interdisciplinary teams with expertise in computational mechanics, materials science, and 
uncertainty quantification to solve challenging problems in mechanics and other fields, should 
also be highlighted. 
 
 

Overarching Themes and Recommendations 
 

Though the discussion groups focused on the four overarching themes (Medicine, UQ/Risk, ML, 
Manufacturing) of the workshop, several elements arose in all discussions in addition to the 
specific technical challenges for each area.  
  
A first issue that arose in all focus area discussions is the need to establish field-relevant and 
field-specific open source repositories that house benchmark data, which is essential for 
challenge, benchmark and validation problems. These repositories also should contain existing 
codes along with manuscripts and documentation that can be used to demonstrate reproducibility.  
Correspondingly, the NSF and other funding agencies should consider long-term support of 
software maintenance, which is distinct from the current funding model of supporting funding for 
model and method development. Finally, it is important to incentivize the sharing of codes and 
data that result from federal funding, to enable the growth and visibility of these open source 
repositories. 
  
A second issue concerns the fact that as CM becomes a convergent discipline in the sense that 
it is needed in nearly all emerging and critical scientific disciplines, there is considerable difficulty 
and confusion that arises from the lack of common language and terminology across disciplines.  
This confusion hinders or significantly delays researchers from considering these multidisciplinary 



scientific challenges. The CM community would benefit from such a unification, perhaps through 
building dictionaries from other fields and communities. 
  
Third, many discussions centered around the need for new funding models that reward truly 
interdisciplinary teams involving engineers, biologists, mathematicians and statisticians, 
computer scientists, etc., that are needed to tackle the complex technical challenges that emerged 
from the workshop.  Furthermore, there are opportunities for the NSF and other federal funding 
agencies, industry and National Labs to formulate and support research challenges and open 
questions; for example, a common theme between all focus areas was the challenges involved in 
modeling material fracture and failure.  Existing funding possibilities that could enable such 
projects include NRT or GOALI calls, though it seems likely that new, interdisciplinary funding 
mechanisms may be most effective in meeting this objective. 
  
Finally, participants recognized the need for new educational paradigms given the current 
disconnect between current undergraduate and graduate curricula, and the emerging focus areas 
discussed at the workshop. For example, for ML and UQ/Risk to have better practitioners and 
users it will require strengthening themes of statistics and probability at all educational levels. 
Furthermore, the complex, multidisciplinary nature of these problems also points to a need to 
educate current researchers.  Focused tutorial-based workshops that are meant to educate 
attendees represent one possible approach to help achieve this objective. 
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