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How does it perform?

We benchmark TT-ICE and TT-ICE* against ITTD
[4], the only available algorithm with rank
adaptation, on two problems:

1. ATARI-game video seguences

Why do we care?

» Tensors are representations for multivariate  Main idea: Each core represents a basis for the corresponding dimension. We expand or adapt this

or high-dimensional data. basis when it is insufficient for representing a new data point. We call this algorithm TT-Incremental
« Storage and computational requirements Core Expansion (TT-ICE)[5].

scale exponentially with dimensions as the  Problem setting:

How do we achieve 57 x higher compression in 5% of time?[5]

representation of tensors. =
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What is a tensor-train- Data source TT-ICE _ ATARI frames

size of a tensor increases. Y ) 2. Tlm_e-d?pendent PDE solutions of self-
+ Tensor decompositions provide compressed oL &:’f » \ | oscillating gels
eam

Updated TT-cores 60 game sequences with varying number
of frames. Each sequence Is a 5-way tensor

with shape 30 x 28 x 40 x 3 x N (1)

Tensor-train|[1] (TT) 1s a compact representation

format for n dimensional tensors.
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Figure 1: Visual representation of a 3-dimensional tensor in TT-format [2]

Rank of the mode-i unfolding of the d-way tensor tensor
X e R"1*X"d pgrovides an upper bound to the i-th /’. A ———
: 10 i Reshaped LT d+1
TT-rank r; and Is computed as Change 7 to ¢ 41 and reshape P Reshape the i-th TT-core G; into U; and N —— N

the projected tensor tensor Calculate the residual of the ¢-th'1'I-core Number of frames in accumulation 104

Ti—1Tq X Ti41 - .- Nd+1 Rz — ([m_mi — Uz U,LT) Yk_|_1 Figures 3 and 4: Number of frames vs execution time (left) and compression ratio (right)
witheges = 0.1 [5]
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Set ¢ = 1 and reshape the streamed tensor | Streamed
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X ;) = reshape(X(n;,ni ... nj—1ni41...7n4q))
The i-th TT-core G, can be interpreted as basis for

the i-th dimension if reshaped as Projected - We achieve 88% reduction in time with TT-1CE*!
o . Residual P : :
Ui = reshape(G;, [ri-1ni, i) tensor Self-oscillating gel simulations

Process the tensor , v . T X T
Why do we need incremental algorithms? i gfti+l X it - - Nd+1 Pimli Sl g B to compute

by projecting onto + truncated SVD Parametric PDE simulated for 6400
In many applications, data Is streaming. Even the quated t-th I I -I C E R, =Ur,Xr, VL + En, unique parameter combinations.
when it is available, the size of data becomes a  °"¢ Y EV"’:EE ;r;‘g‘;it'oqésa g;wa%/ terlmzor
: - . X X X X .
bottleneck due to limited memory. Rank adapted Left singular i . Example snapshots
o ] ] 1+1)-th core vectors from PDE simulation [3]
Existing incremental algorithms such as ITTD|3] (i+1) e TTICE* wee TTICE oo TTD? -ere TTTDS
and TT-FOA[4] have limitations: (i +TR,) X MiaTi R @105 =
X Inefficient rank adaptation or fixed rank with Extend the basis of U; directly by & .
Nno adaptIVIty TO maintain Taﬂk ConSiSteﬂCy . appending URi and Obtaiﬂ the 4; 103 | :' ------------------------------- g 103
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0 TT-ICE Is guaranteed to approximate streamed tensors to a given Number of frames in accumulation

Figures 6 and 7: Number of frames vs execution time (left) and compression ratio (right)

accuracy and maintain that for the entire duration of the stream!  with cae. = 0.1 [5]

) Low memory footprint of TT-ICE enables
accuracy How do we make it faster? compression where literature fails!
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