THE STATE UNIVERSITY

OF NEW JERSEY

Parameshwaran Pasupathy¹, John G.Georgiadis² and Assimina A. Pelegri¹

and periodicity vector, p_i^{α} by

freedom, i.

¹Mechanical and Aerospace Engineering, Rutgers - The State University of New Jersey, New Brunswick, NJ 08854 ²Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 61801

Introduction

Motivation:

Viscoelasticity is a sensitive measure of the composition of brain tissue and is an important marker in predicting neurodegenerative processes.

Objective:

- We aim to develop a numerical framework of the microstructure of brain white matter that incorporates a fractional viscoelastic constitutive material model of the composite white matter comprising of axons and glia.
- Representative volume elements (RVE) of axons embedded in glia with periodic boundary conditions are developed and subjected to a relaxation displacement boundary condition.
- Homogenized orthotropic fractional material properties of axons in glia are extracted by solving the inverse problem.

A Logistic Regression Model for Power-Law

The complex modulus of a viscoelastic model following a power law behavior with material constants, κ and β can be written as

 $G(\boldsymbol{\omega}) = \boldsymbol{\kappa}(i\boldsymbol{\omega})^{\boldsymbol{\beta}} = G' + iG'' = \Re(G(\boldsymbol{\omega})) + i\Im(G(\boldsymbol{\omega}))_{\boldsymbol{\beta}}$

A cost function that minimizes a logistic regression model for a power-law is defined as

Minimization of Cost function for the logistic regression model.

Component	$\kappa \left(Pa \cdot s^{\beta} \right)$	β
Axon	264.115	0.419
Matrix	252.503	0.239

Material constants for Axon and ECM obtained by minimizing the logistic regression cost function.

Storage and loss modulus vs frequency for axon (Top) and ECM (Bottom) using a power-law model.

A Fractional Viscoelastic Model of the Axon in Brain White Matter

Finite Element Model of the Microstructure

The stress for a fractional viscoelastic springpot model is proportional to the β order of strain $\boldsymbol{\sigma}(t) = C_{\boldsymbol{\beta}} \frac{d^{\boldsymbol{\beta}} \boldsymbol{\varepsilon}(t)}{dt^{\boldsymbol{\beta}}} \,\forall \, (0 \leq \boldsymbol{\beta} \leq 1).$

A generalization of derivatives of non-integer orders can be obtained in a branch of mathematics called fractional calculus using the Liouville-Caputo derivative. The stress is thus

$$\sigma(t) = \frac{\kappa}{\Gamma(1-\beta)} \int_0^t (t-\tau)^{-\beta} \frac{d\varepsilon(\tau)}{d\tau}$$

For a 3D finite element model, writing κ in terms of the volumetric and deviatoric components, the stress equation is

$$\sigma_{ij} = \frac{1}{\Gamma(1-\beta)} \int_0^t (K_\beta - \frac{2}{3}G_\beta) \delta_{ij} \varepsilon_{kk}(t) dt + \frac{1}{\Gamma(1-\beta)} \int_0^t G_\beta(\varepsilon_{ij}(t) + \varepsilon_{ji}(t)) dt$$

For a 3D state of stress, the Liouville-Caputo derivative can be numerically computed using the Grunwald-Letnikov operator

$$\sigma_{11}^{k+1} = (K_{\beta} - \frac{2G_{\beta}}{3}) \left(\frac{1}{\Delta t}\right)^{\beta} \sum_{l=1}^{k+1} \varphi_l \varepsilon_{kk} \left((k+1-l)\Delta t\right) + 2G_{\beta} \left(\frac{1}{\Delta t}\right)^{\beta} \sum_{l=1}^{k+1} \varphi_l \varepsilon_{kk} \left((k+1-l)\Delta t\right) + 2G_{\beta} \left(\frac{1}{\Delta t}\right)^{\beta} \sum_{l=1}^{k+1} \varphi_l \varepsilon_{kk} \left((k+1-l)\Delta t\right) + 2G_{\beta} \left(\frac{1}{\Delta t}\right)^{\beta} \sum_{l=1}^{k+1} \varphi_l \varepsilon_{kk} \left((k+1-l)\Delta t\right) + 2G_{\beta} \left(\frac{1}{\Delta t}\right)^{\beta} \sum_{l=1}^{k+1} \varphi_l \varepsilon_{kk} \left((k+1-l)\Delta t\right) + 2G_{\beta} \left(\frac{1}{\Delta t}\right)^{\beta} \sum_{l=1}^{k+1} \varphi_l \varepsilon_{kk} \left((k+1-l)\Delta t\right) + 2G_{\beta} \left(\frac{1}{\Delta t}\right)^{\beta} \sum_{l=1}^{k+1} \varphi_l \varepsilon_{kk} \left((k+1-l)\Delta t\right) + 2G_{\beta} \left(\frac{1}{\Delta t}\right)^{\beta} \sum_{l=1}^{k+1} \varphi_l \varepsilon_{kk} \left((k+1-l)\Delta t\right) + 2G_{\beta} \left(\frac{1}{\Delta t}\right)^{\beta} \sum_{l=1}^{k+1} \varphi_l \varepsilon_{kk} \left((k+1-l)\Delta t\right) + 2G_{\beta} \left(\frac{1}{\Delta t}\right)^{\beta} \sum_{l=1}^{k+1} \varphi_l \varepsilon_{kk} \left((k+1-l)\Delta t\right) + 2G_{\beta} \left(\frac{1}{\Delta t}\right)^{\beta} \sum_{l=1}^{k+1} \varphi_l \varepsilon_{kk} \left((k+1-l)\Delta t\right) + 2G_{\beta} \left(\frac{1}{\Delta t}\right)^{\beta} \sum_{l=1}^{k+1} \varphi_l \varepsilon_{kk} \left((k+1-l)\Delta t\right) + 2G_{\beta} \left(\frac{1}{\Delta t}\right)^{\beta} \sum_{l=1}^{k+1} \varphi_l \varepsilon_{kk} \left((k+1-l)\Delta t\right) + 2G_{\beta} \left(\frac{1}{\Delta t}\right)^{\beta} \sum_{l=1}^{k+1} \varphi_l \varepsilon_{kk} \left((k+1-l)\Delta t\right) + 2G_{\beta} \left(\frac{1}{\Delta t}\right)^{\beta} \sum_{l=1}^{k+1} \varphi_l \varepsilon_{kk} \left((k+1-l)\Delta t\right) + 2G_{\beta} \left(\frac{1}{\Delta t}\right)^{\beta} \sum_{l=1}^{k+1} \varphi_l \varepsilon_{kk} \left((k+1-l)\Delta t\right) + 2G_{\beta} \left(\frac{1}{\Delta t}\right)^{\beta} \sum_{l=1}^{k+1} \varphi_l \varepsilon_{kk} \left((k+1-l)\Delta t\right) + 2G_{\beta} \left(\frac{1}{\Delta t}\right)^{\beta} \sum_{l=1}^{k+1} \varphi_l \varepsilon_{kk} \left((k+1-l)\Delta t\right) + 2G_{\beta} \left(\frac{1}{\Delta t}\right)^{\beta} \sum_{l=1}^{k+1} \varphi_l \varepsilon_{kk} \left((k+1-l)\Delta t\right) + 2G_{\beta} \left(\frac{1}{\Delta t}\right)^{\beta} \sum_{l=1}^{k+1} \varphi_l \varepsilon_{kk} \left((k+1-l)\Delta t\right) + 2G_{\beta} \left(\frac{1}{\Delta t}\right)^{\beta} \sum_{l=1}^{k+1} \varphi_l \varepsilon_{kk} \left((k+1-l)\Delta t\right) + 2G_{\beta} \left(\frac{1}{\Delta t}\right)^{\beta} \sum_{l=1}^{k+1} \varphi_l \varepsilon_{kk} \left((k+1-l)\Delta t\right) + 2G_{\beta} \left(\frac{1}{\Delta t}\right)^{\beta} \sum_{l=1}^{k+1} \varphi_l \varepsilon_{kk} \left((k+1-l)\Delta t\right) + 2G_{\beta} \left(\frac{1}{\Delta t}\right)^{\beta} \sum_{l=1}^{k+1} \varphi_l \varepsilon_{kk} \left((k+1-l)\Delta t\right) + 2G_{\beta} \left(\frac{1}{\Delta t}\right)^{\beta} \sum_{l=1}^{k+1} \varphi_l \varepsilon_{kk} \left((k+1-l)\Delta t\right) + 2G_{\beta} \left(\frac{1}{\Delta t}\right)^{\beta} \sum_{l=1}^{k+1} \varphi_l \varepsilon_{kk} \left((k+1-l)\Delta t\right) + 2G_{\beta} \left(\frac{1}{\Delta t}\right)^{\beta} \sum_{l=1}^{k+1} \varphi_l \varepsilon_{kk} \left((k+1-l)\Delta t\right) + 2G_{\beta} \left(\frac{1}{\Delta t}\right)^{\beta} \sum_{l=1}^{k+1} \varphi_l \varepsilon_{kk} \left(\frac{1}{\Delta t}\right) + 2G_{\beta} \left(\frac{1}{\Delta t}\right)^{\beta} \sum_{l=1}^{k+1} \varphi_l \varepsilon_{kk} \left(\frac{1}{\Delta t}\right) + 2G_{\beta} \left(\frac{1}{\Delta t}\right)^{\beta} \sum_{l=1}^{k+1} \varphi_l \varepsilon_{kk} \left(\frac{1}{\Delta t}\right) + 2G_{\beta}$$

$$k = rac{Totaltime}{\Delta t}$$
 $\varphi_{l+1} = rac{(k-1-eta)}{k} \varphi_l, \quad \varphi_1 = 1.$
Grunwald Coefficients

$$\frac{d^{\beta}f}{dt^{\beta}} = \left(\frac{1}{\Delta t}\right)^{\beta} \sum_{l=1}^{M+1} \varphi_{l} f\left((k+1-l)\Delta t\right)$$
$$M = \min\{k, \frac{L}{\Delta t}\}, \ L = Memory \ Length$$

Short memory principle for truncating strain history.

equation below, u_i^p corresponds to displacement variable of node, p and degree of

embedded in ECM (left to right: 0.2, 0.4, 0.5, 0.7).

Fractional Viscoelasticity

Definition

Hexagonally packed RVEs of axons embedded in the ECM of varying volume fractions are developed with a periodic mesh using Abaqus FEA. Periodic boundary conditions (PBC) are enforced between nodes of opposite faces at any coordinate, x_i

$u_i(x_j + p_j^{\alpha}) = u_i(x_j) + \frac{\partial u_i}{\partial x_i} p_j^{\alpha}$

 u_i is the displacement field in the i_{th} direction. In Abaqus, PBC can be implemented via a set of linear constraint equations with A_n number of coefficients. In the

Hexagonally packed periodic unit cell (left). A finite element model of a periodic RVE (center). RVEs with different volume fractions of axon

$$\frac{}{-} d\tau$$

- cells.
- Incorporate hyperelasticity for finite strain simulations. **Acknowledgements**

The authors gratefully acknowledge the support and funding from NSF CMMI-1436743, CMMI-1437113, CMMI-1762774, CMMI-1763005, and the R.A. Pritzker endowed chair.

Develop RVEs with random distribution of axon diameters, non periodic unit