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Overview
Density Functional Theory (DFT) is a widely used electronic structure theory to predict material
properties. In DFT, the many-electron problem is mapped onto an effective single-electron problem.
This reduction is achieved by introducing the exchange-correlation (XC) potential, which encapsu-
lates the quantum many-body effects. However, the exact nature of the XC potential is unknown
and is approximated in practice. Different approximations to XC potentials with increasing accuracy
have been proposed, ranging from Local Density Approximation (LDA - depends on the electron
density), Generalised Density Approximation (GGA - depends on the electron density and its gra-
dient) to hybrid XC potentials ( depends on electron density, gradient, and the orbitals). The higher
accuracy of hybrid XC functionals is attributed to the inclusion of the exact exchange. However,
this inclusion of exact exchange results in a tremendous increase in the calculation cost.

Challenge: Develop an accurate, robust, and scalable algorithm to perform DFT simulations in-
volving hybrid XC functionals that can handle large system sizes.

Methodology and Goals: Develop an algorithm based on systematically convergent Tucker-Tensors
to accelerate the computation of the exact exchange

Progress: We have implemented a Tucker-Tensor algorithm to accelerate the exact exchange compu-
tations in DFT-FE. DFT-FE is a massively parallel, open-sourced C++ code that uses finite element
discretization to solve the DFT equations. The algorithm’s accuracy was validated by comparing
it with the Quantum Espresso (QE) results - a widely used plane waves code. We have exploited
various HPC strategies and devised innovative communication strategies to ensure the efficiency
and scalability of the algorithm. We demonstrate the efficiency of the code by comparing the wall
times with QE. Further, a strong scaling study was performed to exhibit the scalability of the code.

Real-space formulation of GKS-DFT

■ Mathematical formulation The problem of finding ground-state properties under the Gen-
eralised Kohn-Sham Density Functional theory (GKS-DFT) is equivalent to minimizing the
following energy functional:

E(Ψ, R) = Ts(Ψ) + αExx[Ψ] + Exc,sl(ρ) + J(ρ, R) subject to
∫
ψ∗

i (x)ψj(x) dx = δij .

The electron-density ρ and the kinetic energy Ts(Ψ) are given by

ρ(x) =
∑

i

fi |ψi(x)|
2 , Ts(Ψ) =

∑
i

∫
fiψ

∗
i (x)

(
−

1
2
∇2

)
ψi(x) dx .

The exact exchange (Exx) and the semi-local exchange-correlation functional are given by

Exx[Ψ] = −
1
2

∑
i

∑
j

fi fj
ψi(r)ψj(r)ψj(r ′)ψi(r ′)

|r ′ − r|
dr ′dr , Exc,sl(ρ) =

∫
ϵxc,sl(ρ(x))ρ(x) dx .

Electrostatic interactions are computed using the following local variational form

J(ρ, R) = −min
ϕ

{
1

8π

∫
|∇ϕ(x, R)|2 dx −

∫
(ρ(x) + b(x, R))ϕ(x, R) dx

}
.

Euler-Lagrange equation of the above Generalised Kohn-Sham energy functional is the following
nonlinear eigenvalue problem which has to be solved for N(>= Ne/2) smallest eigenvalues and
its corresponding eigenfunctions. (Ne denotes the number of electrons.)(

−
1
2
∇2 + Veff(Ψ, R)

)
ψi = ϵiψi where Veff(Ψ, R) = αVF +

δExc,sl
δρ

+
δJ
δρ

.

The action of the Fock operator on an arbitrary orbital is given by,

VF[Ψ]ϕ = −
∑

j

fj

∫
ψj(r)ψj(r ′)ϕ(r ′)

|r ′ − r|
dr ′

■ Nature of Fock operator
• The convolution integral

∫ ψj(r ′)ϕ(r ′)
|r ′−r| dr ′ can be computed by solving a Poisson equation.

• The action of Fock operator on one orbital requires O(Ne) Poisson solves.
• The action of Fock operator on Ne orbitals are required. Hence O(Ne

2) Poisson equations have to be solved.

Previous attempts
■ Reduce the number of times the action of Fock operator is needed Adaptively Compressed

Exchange (ACE) operator.
• Constructs a low rank approximation that is exact in the space spanned by occupied orbitals.
• Drawback The action of Fock operator still forms the bottleneck.

■ Accelerate the computation of action of Fock operator Linear Scaling approaches.
• Exploits locality of the orbitals.
• Drawback Can not be generically applied to metallic systems.
• Drawback Might require the explicit construction of the Fock operator ( which is very costly).

Algorithmic Implementation : ideas and details

■ Tucker-Tensor decomposition of Functions Functions can be approximated as a sum of
rank-1 matrices.

f (r ′) ≈
Rx∑
a

Ry∑
b

Rz∑
c

gabc Aa(x ′)Bb(y
′)Cc(z ′)

• g is called core tensor and the side matrices (A,B,C) depend on only one coordinate.
• The number of terms Rx, Ry, Rz is called the rank of the decomposition in each direction.
• By increasing the rank the error in the approximation can be systematically reduced.
• The error in the approximation reduces exponentially with the rank of decomposition.
• A rank of [20, 30] is sufficient to achieve chemical accuracy. This is much less than the size of the mesh.

Figure: Schematic of Tucker-Tensor decomposition
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Figure: Dependence of the exchange energy
on the rank of decomposition■ Gaussian approximation for 1/r kernel

1
|r − r ′|

=

T∑
t
αt e−βt(x−x ′)2

e−βt(y−y ′)2
e−βt(z−z ′)2

• Point-wise error is bounded in a region [a,b] which can be decided based on the mesh and domain sizes.
• The number of terms (T) can be increased to reduce the error in the convolution.

■ Accelerating the convolution integral 3-D convolution is converted into 3 1-D integrals!!!!∫
f (r ′)
|r ′ − r|

dr ′ =
∫ ∑

abct

gabcAa(x ′)Bb(y
′)Cc(z ′) αte−βt(x−x ′)2

e−βt(y−y ′)2
e−βt(z−z ′)2

dx ′dy ′dz ′

=
∑
abct

gabcαt

∫
Aa(x ′) e−βt(x−x ′)2

dx ′
∫

Bb(y
′)e−βt(y−y ′)2

dy ′
∫

Cc(z ′) e−βt(z−z ′)2
dz ′

■ MPI parallelisation strategies
• A blocked approach is pursued where in a bunch of operators and input orbitals are assigned to a processor.

The processor computes the convolution for all the pairs of operator-input pairs assigned to it.
• Such an approach allows extreme task parallelisation while minimising communication.
• A round robin approach is pursued to achieve memory parallelisation over the operators.

Figure: Gaussian approximation for the 1/r
kernel
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Figure: Schematic of MPI parallelisation
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Figure: Schematic of round-robin algorithm for memory parallelisation
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Accuracy benchmark
Can accurately compute the ground state energies by achieving the target accuracy of 1E-4
Ha/atom
▶ Implemented PBE0 hybrid functional in DFT-FE, in which the exact exchange energy is

computed using Tucker -Tensor algorithm.
▶ Quantum Espresso computed the PBE0 ground state by solving the Poisson equations in exact

exchange using plane waves.

Table: Comparison of ground state energies
System (No. of electrons Ne) Q-Espresso DFT-FE Error (in Ha/atom)

Pt-Au dimer (Ne = 37) -258.3823 -258.382 1.72E-04
Benzamide (Ne = 46) -69.9225 -69.9213 7.55E-05

Pt 19 atom cluster (Ne = 342) -2303.1149 -2303.1163 7.37E-05
Pt 38 atoms cluster (Ne = 684) -4606.2690 -4606.2655 9.22E-05

Performance Benchmark
▶ The speed ups obtained increases with increasing system size and this observation is

consistent with our complexity analysis.
▶ Obtained a 11x speed up over Quantum Espresso for a single updateFock() for a large TiO2

system.

Figure: One updateFock()
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Figure: Comparison of wall time

▶ Exhibits good scaling even in the extreme scaling regimes.
▶ The relative fraction of communication remains almost constant with scaling establishing the

scalability of the algorithm.
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Figure: Strong scaling of updateFock()
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Figure: Timings breakdown of different parts of the
algorithm

Ongoing/FutureWork
1 GPU porting of the algorithm.
2 Extending to periodic and spin polarized systems.
3 Developing mixing strategies to improve the rate of convergence.
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