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Density Functional Theory (DFT) is a widely used electronic structure theory to predict material B Tucker-Tensor decomposition of Functions Functions can be approximated as a sum of Can accurately compute the ground state energies by achieving the target accuracy of 1E-4
properties. In DFT, the many-electron problem is mapped onto an effective single-electron problem. rank-1 matrices. Ha/atom
This reduction is achieved by introducing the exchange-correlation (XC) potential, which encapsu- / Re Ry R, / , / » Implemented PBEO hybrid functional in DFT-FE, in which the exact exchange energy is
lates the quantum many-body effects. However, the exact nature of the XC potential is unknown FE =Y Y Y gueAalx') Byly") Celz") computed using Tucker -Tensor algorithm.
and is apprOXimated n praCtice. Different apprOXimationS to XC pOtentiaIS with increaSing accuracy a b C > Quantum Espresso Computed the PBEO ground state by Solving the Poisson equations 1N exact
have.been prop Os.ed/ rangu.ng from LO.Cal [?enSIty Approximation (LDA - depends (?n the e‘leCtron e gis called core tensor and the side matrices (A,B,C) depend on only one coordinate. exchange using plane waves.
d?n81ty)/ Gen?rahsed Denslty Approximation (GGA - depends OI} the electron de.nSlty and ltS. gra- e The number of terms Ry, R, R; is called the rank of the decomposition in each direction. Table: Comparison of eround state enereies
dient) to hybrid XC potentials ( depends on electron density, gradient, and the orbitals). The higher e By increasing the rank the error in the approximation can be systematically reduced. : P g g |
accuracy of hybrid XC functionals is attributed to the inclusion of the exact exchange. However, o The error in the approximation reduces exponentially with the rank of decomposition. System (NO.' of electrons N.) | Q-Espresso| DFT-FE | Error (in Ha/atom)
this inclusion of exact exchange results in a tremendous increase in the calculation cost. e A rank of [20,30] is sufficient to achieve chemical accuracy. This is much less than the size of the mesh. Pt-Au d“,ner (N, = 37) ~256.3823 | -258.382 1.72E-04
Benzamide (N, = 46) -69.9225 -69.9213 7.55E-05
Challenge: Develop an accurate, robust, and scalable algorithm to perform DFT simulations in- 100 , , , , — Pt 19 atom cluster (N, = 342) | -2303.1149 |-2303.1163 7.37E-05
volving hybrid XC functionals that can handle large system sizes. core Tensor | —Henh o dpeompnerion. Pt 38 atoms cluster (N, = 684)  -4606.2690 | -4606.2655 9.22E-05
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Methodology and Goals: Develop an algorithm based on systematically convergent Tucker-Tensors

to accelerate the computation of the exact exchange PERFORMANCE BENCHMARK

Progress: We have implemented a Tucker-Tensor algorithm to accelerate the exact exchange compu-
tations in DFT-FE. DFT-FE is a massively parallel, open-sourced C++ code that uses finite element
discretization to solve the DFT equations. The algorithm’s accuracy was validated by comparing
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» The speed ups obtained increases with increasing system size and this observation is
consistent with our complexity analysis.

Side Matrix C

it with the Quantum Espresso (QE) results - a widely used plane waves code. We have exploited il Matrin | | 108 » Obtained a 11x speed up over Quantum Espresso for a single updateFock() for a large TiO2
various HPC strategies and devised innovative communication strategies to ensure the efficiency vide Matrix 8 1:0 e : system.
and scalability of the algorithm. We demonstrate the efficiency of the code by comparing the wall Rank of Tucker Decomposition | | | | |
times with QE. Further, a strong scaling study was performed to exhibit the scalability of the code. Figure: Schematic of Tucker-Tensor decomposition Figure: Dependence of the exchange energy | =8||=ETFE TSRS | 3E4} =8I|:ETFE
m Gaussian approximation for 1/r kernel on the rank of decomposition § N\ '
REAL-SPACE FORMULATION OF GKS-DFT - sl
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B Mathematical formulation The problem of finding ground-state properties under the Gen- r—1/] Z Xt € ¢ ¢ £ £ 3.37x
eralised Kohn-Sham Density Functional theory (GKS-DFT) is equivalent to minimizing the t g R g ! 1.93x
following energy functional: e Point-wise error is bounded in a region [a,b] which can be decided based on the mesh and domain sizes. 5E2
. ) e The number of terms (T) can be increased to reduce the error in the convolution. '
E(W,R) = Ts(¥) + o«Exx[¥] + Excq1(p) +](p, R) subject to J‘I)i (X)Wj(x) dx = 8. B Accelerating the convolution integral 3-D convolution is converted into 3 1-D integrals!!!! 4E3} o
1E2 ] -
The electron-density p and the kinetic energy Ts(W) are given by f(y , , , R 2 B2 RN s 1 E——— —_— — — - Pt 63 Pt 83
. J o r|dr = J Z S Aa(x")By(y)Celz") e Pelx=x)"o=Bely—y ) = Belz=2') gy "y dz — L e
2 2
p(x) = Zfz N)z(x)’ , Ts(¥) = Z Jfl ll)f(x) (_iv ) 1I)i(x) dax. abet o )2 a * N Figure: One updateFock() Figure: Total ground state
- - _ N B(x—x / N ,—Bt(y— / N —Biz—z /
Z : Z , , : B Z Eabc Xt JAﬂ(x ) e ™ dx JB ply e+ I dy JCC(Z ) e ™ dz Figure: Comparison of wall time
The exact exchange (Exy) and the semi-local exchange-correlation functional are given by abct o . . _ .
/ / » Exhibits good scaling even in the extreme scaling regimes.
E. .[¥W] = 1 7 y £ f Wil )wj () (r s () d! dy E..a(p) = | er a(p(x))p(x)dx . m MPI parallelisation strategies » The relative fraction of communication remains almost constant with scaling establishing the
D L L] 7 — 7| ' xc,sl xc,sl e A blocked approach is pursued where in a bunch of operators and input orbitals are assigned to a processor. scalability of the algorithm.
P The processor computes the convolution for all the pairs of operator-input pairs assigned to it.
Electrostatic interactions are computed using the following local variational form e Such an approach allows extreme task parallelisation while minimising communication. o o
; e A round robin approach is pursued to achieve memory parallelisation over the operators. g - — Ideal . B Communication [ Convolution 1400
. == Fock e [ JHadamard [ Transfer Tucker to FE
J(p,R) = _H}gn {8_7'[ J IVb(x, R)’2 ax — J(p(x) + b(x, R))d(x, R) dx} . 4000 [P —r e —r e Yo Wi ¥ iW¥W Wi s " o r
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Euler-Lagrange equation of the above Generalised Kohn-Sham energy functional is the following i S 70 Proc 0 Proc 1 AL g° £
nonlinear eigenvalue problem which has to be solved for N(>= N,/2) smallest eigenvalues and L i — V.0, S5t M|
its corresponding eigenfunctions. (N, denotes the number of electrons.) 2ON [ 4 = c
2000 | : = V.0, 2 '*§ 0.4}
1 2 6Exc sl i ‘ Proc 3 3T T
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The action of the Fock operator on an arbitrary orbital is given by, 500 f _v d 0
AL ' ' ' ' : : 16 nodes 32 nodes 64 nodes 128 nodes
. o / ) — e P 5 20 40 60 80 100 120 Number of Nodes
V [‘l’] — ; q)](r)q)](r )d)(r )d ! 10 102 10° 102 roc —V No of nodes u
¥l =— Z f}  — 7] ¥ r — FPs . . Figure: Timings breakdown of different parts of the
: Figure: Strong scaling of updateFock() loorith
J Figure: Gaussian approximation for the 1/r algorithm
B Nature of Fock operator kernel Figure: Schematic of MPI parallelisation
e The convolution integral | Wdﬂ can be computed by solving a Poisson equation. 7 7] 1728 78 Wy Ws ONGOING / FUTURE W() RK J
e The action of Fock operator on one orbital requires O(N,) Poisson solves.
e The action of Fock operator on N, orbitals are required. Hence O(N,”) Poisson equations have to be solved. Step1 | Proc 0| Proc 2| Proc 4 Proc 1| Proc 3| Proc 5 1 GPU porting of the algorithm.
""""""" ' 2 Extending to periodic and spin polarized systems.
PREVIOUS ATTEMPTS Step 2 | Proc 4 | Proc O | Proc 2 Proc 5| Proc 1| Proc 3 3 Developing mixing strategies to improve the rate of convergence.
............. | I
B Reduce the number of times the action of Fock operator is needed Adaptively Compressed Proc 4 | Proc 0 Proc 3| Proc 5| Proc 1 REFERENCES
Exchange (ACE) operator. .
e Constructs a low rank approximation that is exact in the space spanned by occupied orbitals. 1 P. Motamarri, et al., Comput. Phys. Commun., 246, 106853, 2020.
e Drawback The action of Fock operator still forms the bottleneck. Figure: Schematic of round-robin algorithm for memory parallelisation 2 Ballard, Grey, et al., ACM Transactions on Mathematical Software, 2020.
B Accelerate the computation of action of Fock operator Linear Scaling approaches. 3 DeVore, et al., Springer Berlin Heidelberg, 20009.
e Exploits locality of the orbitals. ACKNOWLEDGEMENTS 4 Khoromskij, Boris N. Chemometrics and Intelligent Laboratory Systems, 2012.
e Drawback Can not be generically applied to metallic systems. 5 Lin Lin. Journal of chemical theory and computation, 2016.

e Drawback Might require the explicit construction of the Fock operator ( which is very costly). I would like to thank Dr. Bikash Kanungo for the discussions and the financial support from TRI. 6 DFT-FE Open-source repo: https://github.com/dft feDevelopers/dftfe
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