His research targets spatially-explicit interactions and feedbacks among components of environmental systems and builds on the development of and experimentation with physics/process-oriented models of water, energy, and element cycles at the plant, hillslope, catchment, and larger scales and the integration of observational data and models. Specific topics include high-resolution flood forecasting using coupled hydrologic-hydrodynamic modeling; assessment of climate impacts on watershed systems; simulation-based studies of ecohydrology of vegetation life-cycle processes and land-surface feedbacks; plant-scale modeling of water uptake and transpiration processes; and modeling of erosion and sediment transport.