Venue: Your Desktop
Many environmental variables such as temperature, rainfall, air pollutants, and soil nutrients are measured at sampled point locations. We often need to estimate these variables at one of more unsampled locations. Geostatistics provide tools and techniques to carry out this task.
In a series of three workshops, we are covering the basics of Geostatistics. In this second workshop, we will focus on covariance and variogram, and their estimation in the context of geostatistical modeling. This is mainly a lecture style workshop, but we will also execute some examples in R. The material will also help you understand the basics of Gaussian Process Regression, a commonly used modeling technique in Machine Learning.