The Catalysis program is part of the Chemical Process Systems cluster, which also includes: 1) the Electrochemical Systems program; 2) the Interfacial Engineering program; and 3) the Process Systems, Reaction Engineering, and Molecular Thermodynamics program.
The goals of the Catalysis program are to increase fundamental understanding in catalytic engineering science and to advance the development of catalysts and catalytic reactions that are beneficial to society. Research should focus on critical challenges and opportunities in both new and proven catalysis technologies. Areas of emphasis may include novel catalyst compositions, structures, operating environment, data science tools, theory, and modeling – preferably in various combinations as dictated by the specific reaction and related knowledge and technology gaps. Target applications include fuels, specialty and bulk chemicals, environmental catalysis, biomass conversion to fuels and chemicals, greenhouse gas mitigation, recycling of waste materials, generation of solar hydrogen, as well as efficient routes to energy utilization.
Heterogeneous catalysis represents the main thrust of the program. Proposals related to both gas-solid and liquid-solid heterogeneous catalysis are welcome, as are proposals that incorporate concepts from homogeneous catalysis. Recent research trends have highlighted the need for evaluation of catalyst performance and properties under working conditions, especially as supported by advanced in situ and in operando characterization methods. Catalyst synthesizability and stability present additional research opportunities given the harsh operating environments of many catalytic processes.