Lung cancer remains the leading cause of cancer related mortality in the US, and globally, accounting for 1.8 million deaths annually. Many of these deaths are preventable by the implementation of prevention strategies, including tobacco control policies and lung cancer screening recommendations, and by improvements in lung cancer treatment. In the US, these policies have generally been implemented based on the analysis and outcomes of the population as a whole, although data analyses have shown that smoking and lung cancer rates, and access to healthcare and interventions, vary significantly by education, income, and race/ethnicity.
The Cancer Intervention and Surveillance Modeling Network (CISNET) Lung Working Group (LWG), led by Rafael Meza, associate professor of Epidemiology from the School of Public Health and MICDE member, has been awarded a new $8.5M grant to investigate the synergistic impacts of tobacco control policies, lung cancer screening and treatment interventions in the US and in middle-income nations. For the past 15 years, the CISNET LWG has contributed to the development of US national strategies for reducing the lung cancer burden by quantifying, through modeling and simulation, the impact of tobacco control on smoking, lung cancer, and overall mortality, as well as the population benefits and harms of lung cancer screening. This new grant will allow the group to expand their work to consider the impact of treatment improvements, including targeted therapies and immunotherapies, and the synergies between treatment and prevention interventions. It also will enable the researchers to continue their work in addressing smoking and lung cancer disparities. The consortium uses a comparative modeling approach, where multiple, but distinct, models use the same data inputs, and aim to answer a common question with different approaches. This allows the group to assess the strengths and weaknesses of the different models, and aid the decision making process.
Established in 2000, CISNET is a consortium of NCI-sponsored investigators who use modeling and simulation to improve their understanding of cancer control interventions in prevention, screening, and treatment and their effects on population trends in incidence and mortality. CISNET is committed to bringing the most sophisticated evidence-based planning tools to population health and public policy. These models have been used to guide public health research and priorities, and have aided the development of optimal cancer control strategies. Besides lung cancer, CISNET also includes breast, colon, cervical esophageal and prostate cancer groups.