katsuyothornton
734-615-1498
Methodologies: High Performance Computing, Physics-Specific Methods

Katsuyo Thornton

Associate Professor, Materials Science and Engineering

Affiliation(s):

Michigan Energy Institute, Applied Physics

Thornton’s research focuses on computational and theoretical investigations of the evolution of microstructures and nanostructures during processing and operation of materials. These investigations facilitate the understanding of the underlying physics of materials and their performance, which will aid us in designing advanced materials with desirable properties and in developing manufacturing processes that would enable their fabrication. The topics include growth and coarsening of precipitates, evolution of morphologically and topologically complex systems, microstructure-based simulations of electrochemical systems such as batteries, and self-assembly of quantum dots and other nanoscale phenomena during heteroepitaxy of semiconductors.  These projects involve advanced computational methods and large-scale simulations performed on high-performance computational platforms, and insights provide a means for material design and optimization.

A snapshot from a simulation of charge-discharge process in a lithium-ion battery, based on an experimentally obtained microstructure.

A snapshot from a simulation of charge-discharge process in a lithium-ion battery, based on an experimentally obtained microstructure.