Methodologies: Computational Fluid Dynamics, Data Mining, Data, Statistics and Stochastic Methods, High Performance Computing, Machine Learning, Multi-scale and Large-scale, Physics-Specific Methods, Visualization

Camille Avestruz

LSA Collegiate Fellow, Physics

Dr. Avestruz is a computational cosmologist. She uses simulations to model, predict, and interpret observed large-scale cosmic structures. Her primary focus is to understand the evolution of galaxy clusters. These are the most massive gravitationally collapsed structures in our universe, comprised of hundreds to thousands of galaxies. Other aspects of her work prepare for the next decade of observations, which will produce unprecedented volumes of data. In particular, she is leading software development efforts within the clusters working group of the Large Synoptic Survey Telescope to calibrate galaxy cluster masses from simulation data. Dr. Avestruz also incorporates big data methods, including machine learning, to extract gravitational lensing signatures that probe the mass distribution of massive galaxies and galaxy clusters.

[Click on image to see video] Image projection of various components and properties of a simulated galaxy cluster in its last 8 gigayears of formation. The top left panel shows the underlying dark matter content, the top middle image shows the distribution of stars, and the remaining four panels are properties of the gas content: density, temperature, entropy, and metallicity. To model the evolution of galaxy clusters in a cosmological volume, the simulation uses adaptive refinement in space and time in order to span the relevant dynamic range of the system.