Explore ARCExplore ARC

Research Opportunity, Mechanical Engineering, TREE Lab – Summer 2019

By | Educational, Research, SC2, SC2 jobs

Dr. Bala Chandran’s Research Group, Mechanical Engineering, TREE Lab

Dr. Bala Chandran is seeking a highly motivated graduate (doctoral or masters) student interested in
doing research in the broad area of understanding radiative heat transfer in granular and
suspension flows via computational modeling for applications of high-temperature
energy storage and catalysis applications. Applicants are expected to have a sound
knowledge of fluid/continuum mechanics and the fundamentals of heat-transfer;
experience in complex fluids or multiphase flows is desirable, though not essential.
Applicants should be interested in the computational aspects of this project to develop
and write code.

Qualifications

  • Strong analytical and computational skills, and intellectual independence (i.e.,
    able to read books and papers and learn by oneself; able to apply theoretical
    knowledge to practical situations)
  • Relevant course work and experience related to
    • Undergraduate level fluid mechanics, solid mechanics, heat transfer,
      radiation, numerical methods and programming, computational fluid/solid
      mechanics
    • Graduate level courses on any/all of the above topics will be a plus point
  • Excellent professional and work ethic
  • Team player that is ready to interface with people developing experiments on
    this project

Application Procedure

If you are interested in this opportunity, please email Prof. Bala Chandran
(rbchan@umich.edu) all the following documents AS SOON AS POSSIBLE:

  1. A 2-page CV with references listed
  2. Unofficial academic transcript
  3. 1 one-page (maximum) statement of interest that explains why you are best suited for working on the proposed research topic and indicates how you meet the required project criteria.
  4. Slides (maximum 5) that showcase your research experience and contributions

Michigan Biological Software Team to compete at iGEM with MICDE support

By | Educational, General Interest, News, SC2

MICDE is pleased to announce its support of the Michigan Biological Software Team (MiBioSoft), for its attendance at the 2017 International Genetically Engineered Machine (iGEM) competition in Boston.

Founded in 2014, MiBioSoft is a student-run organization at the University of Michigan that develops software for use in scientific research, with a focus on synthetic biology. It seeks to provide its members with opportunities to not only improve their skills as software designers, but also to improve their communication and management skills by bringing together students from a variety of backgrounds including Biology, Mathematics, Computer Science, and Chemistry.

MiBioSoft competes annually in the software track of the iGEM competition, where research teams from around the world present their results over the course of a three-day conference. During the first two years at the competition, the team was awarded bronze medals. In 2016, MiBioSoft received Best Software Project award as well as a gold medal for their protocol catalog, ProtoCat, in a competition that featured over 300 teams from more than 40 countries, with more than 5,000 participants in total.

About Protocat

Protocat is protocol catalog software developed by MiBioSoft students to address the issue of reproducibility in synthetic biology. Like many innovative ideas, it began because of a problem. Studies have estimated that only 10-25% of published scientific results are reproducible. A 2014 survey conducted by the Michigan Software team confirmed that the repeatability problem exists in synthetic biology, with every scientist surveyed reporting prior struggles with replicating protocols.

ProtoCat 3.0 is a free database of crowd-sourced protocols designed to make existing protocols more repeatable and enable more accurate computational models of biological systems. MiBioSoft believes this can most efficiently be accomplished with a commitment to open source protocols and a broader more active community of digital troubleshooters. ProtoCat 3.0 works to establish such a community by giving anyone with an internet connection or smartphone access to a repository of synthetic biology protocols collected from all over the world. Additionally, ProtoCat 3.0 encourages the development of higher quality, more repeatable protocols by allowing users to document, rate, review, and edit existing methods.